The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Topology of arrangements and position of singularities

Enrique Artal Bartolo — 2014

Annales de la faculté des sciences de Toulouse Mathématiques

This work contains an extended version of a course given in held at Pau (France) in June 2012. In the first part, we recall the computation of the fundamental group of the complement of a line arrangement. In the second part, we deal with characteristic varieties of line arrangements focusing on two aspects: the relationship with the position of the singular points (relative to projective curves of some prescribed degrees) and the notion of essential coordinate components.

Braids in Pau – An Introduction

Enrique Artal BartoloVincent Florens — 2011

Annales mathématiques Blaise Pascal

In this work, we describe the historic links between the study of 3 -dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example.

Quotients jacobiens d'applications polynomiales

Enrique Artal BartoloPhilippe Cassou-NoguèsHélène Maugendre — 2003

Annales de l’institut Fourier

Soit φ : = ( f , g ) : 2 2 f et g sont des applications polynomiales. Nous établissons le lien qui existe entre le polygone de Newton de la courbe réunion du discriminant et du lieu de non-propreté de φ et la topologie des entrelacs à l’infini des courbes affines f - 1 ( 0 ) et g - 1 ( 0 ) . Nous en déduisons alors des conséquences liées à la conjecture du jacobien.

Page 1

Download Results (CSV)