Non oscillating solutions of analytic gradient vector fields
Let be an integral solution of an analytic real vector field defined in a neighbordhood of . Suppose that has a single limit point, . We say that is non oscillating if, for any analytic surface , either is contained in or cuts only finitely many times. In this paper we give a sufficient condition for to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for...