The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Non oscillating solutions of analytic gradient vector fields

Fernando Sanz — 1998

Annales de l'institut Fourier

Let γ be an integral solution of an analytic real vector field ξ defined in a neighbordhood of 0 3 . Suppose that γ has a single limit point, ω ( γ ) = { 0 } . We say that γ is non oscillating if, for any analytic surface H , either γ is contained in H or γ cuts H only finitely many times. In this paper we give a sufficient condition for γ to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for...

Solutions non oscillantes d’une équation différentielle et corps de Hardy

François BlaisRobert MoussuFernando Sanz — 2007

Annales de l’institut Fourier

Soit ϕ : x ϕ ( x ) , x 0 une solution à l’infini d’une équation différentielle algébrique d’ordre n , P ( x , y , y , ... , y ( n ) ) = 0 . Nous donnons un critère géométrique pour que les germes à l’infini de ϕ et de la fonction identité sur appartiennent à un même corps de Hardy. Ce critère repose sur le concept de non oscillation.

Page 1

Download Results (CSV)