The aim of this paper is to present how to make a dedicaded computed language polymorphic and multi type, in C++to solve partial differential equations with the finite element method. The driving idea is to make the language as close as possible to the mathematical notation.
The aim of this paper is to present how to make a dedicaded computed language polymorphic and multi type, in to solve partial differential equations with the finite element method.
The driving idea is to make the language as close as possible to the mathematical notation.
For the Stokes problem in a two- or three-dimensional
bounded domain, we propose a new mixed finite element discretization which relies on
a nonconforming approximation of the velocity and a more accurate approximation of the
pressure. We prove that the velocity and pressure discrete spaces are compatible, in the
sense that they satisfy an inf-sup condition of Babuška and Brezzi type, and we
derive some error estimates.
In order to handle the flow of a viscous incompressible fluid in a porous medium with cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy equations in the medium with the Stokes equations in the cracks by a new boundary condition at the interface, namely the continuity of the pressure. We prove that this model admits a unique solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite element discretization and derive...
We consider a variational formulation of the three-dimensional Navier–Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish and error estimates.
In order to handle the flow of a viscous incompressible fluid in a porous medium with cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy equations in the medium with the Stokes equations in the cracks by a new boundary condition at the interface, namely the continuity of the pressure. We prove that this model admits a unique solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite element discretization and derive...
As a first draft of a model for a river flowing on a homogeneous porous ground, we consider a system where the Darcy and Stokes equations are coupled appropriate matching conditions on the interface. We propose a discretization of this problem which combines the mortar method with standard finite elements, in order to handle separately the flow inside and outside the porous medium. We prove and error estimates for the resulting discrete problem. Some numerical experiments confirm the interest...
Download Results (CSV)