Multiplicity results for an inhomogeneous Neumann problem with critical exponent.
Motivati dall'analisi asintotica dei vortici nella teoria di Chern-Simons-Higgs, si studia l'equazione dove é il toro piatto bidimensionale. In contrasto con l'analogo problema di Dirichlet, si dimostra che per l'equazione ammette una soluzione non banale. Tale soluzione cattura il carattere bidimensionale dell'equazione, nel senso che, per tali valori di , l'equazione non può ammettere soluzioni (periodiche) non banali dipendenti da una sola variabile (vedi [10]).
We first discuss a class of inequalities of Onofri type depending on a parameter, in the two-dimensional Euclidean space. The inequality holds for radial functions if the parameter is larger than . Without symmetry assumption, it holds if and only if the parameter is in the interval . The inequality gives us some insight on the symmetry breaking phenomenon for the extremal functions of the Caffarelli-Kohn-Nirenberg inequality, in two space dimensions. In fact, for suitable sets of parameters (asymptotically...
Page 1