A sufficient condition for existence of real analytic solutions of P.D.E. with constant coefficients, in open sets of
Let M be a real-analytic submanifold of whose “microlocal” Levi form has constant rank in a neighborhood of a prescribed conormal. Then local non-solvability of the tangential ∂̅-system is proved for forms of degrees , (and 0). This phenomenon is known in the literature as “absence of the Poincaré Lemma” and was already proved in case the Levi form is non-degenerate (i.e. ). We owe its proof to [2] and [1] in the case of a hypersurface and of a higher-codimensional submanifold respectively....
For a wedge of , we introduce two conditions of weak -pseudoconvexity, and prove that they entail solvability of the -system for forms of degree with coefficients in and respectively. Existence and regularity for in is treated by Hörmander [5, 6] (and also by Zampieri [9, 11] in case of piecewise smooth boundaries). Regularity in is treated by Henkin [4] (strong -pseudoconvexity by the method of the integral representation), Dufresnoy [3] (full pseudoconvexity), Michel [8] (constant...
Si discute l'esistenza di soluzioni su insiemi aperti per equazioni differenziali iperbolico-ipoellittiche. Si dà una caratterizzazione geometrica quasi completa per aperti .
Sia un compatto, una funzione analitica all'intorno di , ed la massima molteplicità in degli zeri di ; si prova che la potenza (, ) è integrabile in . L'estensione meromorfa dell'applicazione da a tutto (con valori in anziché in ) era già stata provata in [1] e [2].
Si discute l'esistenza di soluzioni su insiemi aperti per equazioni differenziali iperbolico-ipoellittiche. Si dà una caratterizzazione geometrica quasi completa per aperti .
Sia un compatto, una funzione analitica all'intorno di , ed la massima molteplicità in degli zeri di ; si prova che la potenza (, ) è integrabile in . L'estensione meromorfa dell'applicazione da a tutto (con valori in anziché in ) era già stata provata in [1] e [2].
We prove that for a real analytic generic submanifold of whose Levi-form has constant rank, the tangential -system is non-solvable in degrees equal to the numbers of positive and negative Levi-eigenvalues. This was already proved in [1] in case the Levi-form is non-degenerate (with non-necessarily real analytic). We refer to our forthcoming paper [7] for more extensive proofs.
Let be a closed set of , whose conormai cones , , have locally empty intersection. We first show in §1 that , is a function. We then represent the n microfunctions of , , using cohomology groups of of degree 1. By the results of § 1-3, we are able to prove in §4 that the sections of , , satisfy the principle of the analytic continuation in the complex integral manifolds of , being a base for the linear hull of in ; in particular we get . When is a half space with -boundary,...
Let , let be a hypersurface of , be a submanifold of . Denote by the Levi form of at . In a previous paper [3] two numbers , are defined; for they are the numbers of positive and negative eigenvalues for . For , , we show here that are still the numbers of positive and negative eigenvalues for when restricted to . Applications to the concentration in degree for microfunctions at the boundary are given.
Let be a complex manifold, a generic submanifold of , the real underlying manifold to . Let be an open subset of with analytic, a complexification of . We first recall the notion of -tuboid of and of and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for to the extendability of functions on to -tuboids of . Next, if has complex dimension 2, we give results on extension...
Page 1