Dans ce travail, nous avons montré que si , où les sont des champs de vecteurs linéairement independants dans un ouvert de tels que l’algèbre de Lie qu’ils engendrent soit de rang maximum en tout point et la forme volume qu’on leur associe soit de classe 4 en un point de , alors il existe un voisinage ouvert de et une fonction tels que possède pas la propriété de prolongement unique.
In this text, we present two recent results on the characterization of the lack of compactness of some critical Sobolev embedding. The first one derived in [] deals with an abstract framework including Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder and BMO spaces. The second one established in [] concerns the lack of compactness of into the Orlicz space. Although the two results are expressed in the same manner (by means of defect measures) and rely on the defect of compactness due to concentration...
On se propose dans cet exposé de décrire le comportement des solutions de l’équation de Schrödinger non linéaire à croissance exponentielle, où la norme d’Orlicz joue un rôle crucial. Notre analyse qui est basée sur les décompositions en profils met en lumière le rôle distingué de la composante -oscillante de la suite des données initiales. Ce phénomène est complètement différent de ceux obtenus dans le cadre des équations semi-linéaires dispersives critiques, où toutes les composantes oscillantes...
We adapt the homogeneous Littlewood-Paley decomposition on the Heisenberg group constructed by H. Bahouri, P. Gérard et C.-J. Xu in [4] to the inhomogeneous case, which enables us to build paraproduct operators, similar to those defined by J.-M. Bony in [5]; although there is no simple formula for the Fourier transform of the product of two functions, some spectral localization properties of the classical case are preserved on the Heisenberg group after the product has been taken. Using the dyadic...
Dans ce texte, notre but est de résoudre des équations d’ondes quasilinéaires pour des données initiales moins régulières que ce qu’impose les méthodes d’énergie. Ceci impose de démontrer des estimées de type Strichartz pour des opérateurs d’ondes à coefficients seulement lipschitziens.
The aim of this article is to present “refined” Hardy-type inequalities. Those inequalities are generalisations of the usual Hardy inequalities, their additional feature being that they are invariant under oscillations: when applied to highly oscillatory functions, both sides of the refined inequality are of the same order of magnitude. The proof relies on paradifferential calculus and Besov spaces. It is also adapted to the case of the Heisenberg group.
We prove in this work the trace and trace lifting theorem for Sobolev spaces on the Heisenberg groups for hypersurfaces with characteristics submanifolds.
Download Results (CSV)