Construction des corps abéliens de degré 5
Soit une extension algébrique du corps des nombres rationnels, galoisienne et de degré premier . Si désignent des éléments primitifs conjugués de , on note , , leurs résolvantes de Lagrange. Les nombres sont des éléments primitifs conjugués du corps des racines -ièmes de l’unité. La première partie est consacrée à la caractérisation de ces , on en déduit une paramétrisation des polynômes abéliens de degré . On s’intéresse ensuite aux associés à des éléments entiers,...
Pour décrire la structure galoisienne à -isomorphisme près du quotient par du groupe des unités d’une extension abélienne absolue de groupe de Galois de type , on amorce la description des -modules de type fini libres sur dont le caractère est contenu dans la représentation d’augmentation. La classification est complète pour les modules de rang inférieur ou égal à 3 ; elle est appliquée à la description donnée par T. Kubota des unités d’un corps biquadratique non cyclique en fonction des...
Page 1