Let X be a compact convex set and let ext X stand for the set of all extreme points of X. We characterize those bounded function defined on ext X which can be extended to an affine Baire-one function on the whole set X.
Let E be a Banach space and let and denote the space of all Baire-one and affine Baire-one functions on the dual unit ball , respectively. We show that there exists a separable L₁-predual E such that there is no quantitative relation between and , where f is an affine function on . If the Banach space E satisfies some additional assumption, we prove the existence of some such dependence.
We prove that an -additive cover of a Čech complete, or more generally scattered-K-analytic space, has a σ-scattered refinement. This generalizes results of G. Koumoullis and R. W. Hansell.
We prove that any Baire-one usco-bounded function from a metric space to a closed convex subset of a Banach space is the pointwise limit of a usco-bounded sequence of continuous functions.
Let be a simplicial function space on a metric compact space . Then the Choquet boundary of is an -set if and only if given any bounded Baire-one function on there is an -affine bounded Baire-one function on such that on . This theorem yields an answer to a problem of F. Jellett from [8] in the case of a metrizable set .
We construct a metrizable simplex X such that for each n ɛ ℕ there exists a bounded function f on ext X of Baire class n that cannot be extended to a strongly affine function of Baire class n. We show that such an example cannot be constructed via the space of harmonic functions.
If E is a Banach space, any element x** in its bidual E** is an affine function on the dual unit ball that might possess a variety of descriptive properties with respect to the weak* topology. We prove several results showing that descriptive properties of x** are quite often determined by the behaviour of x** on the set of extreme points of , generalizing thus results of J. Saint Raymond and F. Jellett. We also prove a result on the relation between Baire classes and intrinsic Baire classes...
It is proved that -mappings preserve absolute Borel classes, which improves results of R. W. Hansell, J. E. Jayne and C. A. Rogers. The proof is based on the fact that any -mapping f: X → Y of an absolute Suslin metric space X onto an absolute Suslin metric space Y becomes a piecewise perfect mapping when restricted to a suitable -set satisfying .
Let be a complex -predual, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire- functions on the set of the extreme points of the dual unit ball to the whole unit ball . As a corollary we show that, given , the intrinsic -th Baire class of can be identified with the space of bounded homogeneous Baire- functions on the set when satisfies certain topological assumptions. The paper is intended to be a complex counterpart to the same authors’...
We provide a complex version of a theorem due to Bednar and Lacey characterizing real -preduals. Hence we prove a characterization of complex -preduals via a complex barycentric mapping.
We prove in particular that Banach spaces of the form C₀(Ω), where Ω is a locally compact space, enjoy a quantitative version of the reciprocal Dunford-Pettis property.
We investigate Baire classes of strongly affine mappings with values in Fréchet spaces. We show, in particular, that the validity of the vector-valued Mokobodzki result on affine functions of the first Baire class is related to the approximation property of the range space. We further extend several results known for scalar functions on Choquet simplices or on dual balls of L₁-preduals to the vector-valued case. This concerns, in particular, affine classes of strongly affine Baire mappings, the...
Let , i∈ I, and , j∈ J, be compact convex sets whose sets of extreme points are affinely independent and let φ be an affine homeomorphism of onto . We show that there exists a bijection b: I → J such that φ is the product of affine homeomorphisms of onto , i∈ I.
We provide a corrected proof of [1, Théorème 9] stating that any metrizable infinite-dimensional simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices.
Download Results (CSV)