This paper gives a brief survey of certain recently developing aspects of the study of loops and quasigroups, focussing on some of the areas that appear to exhibit the best prospects for subsequent research and for applications both inside and outside mathematics.
For a positive integer , the usual definitions of -quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin -cubes, or by identities on different -ary operations. In this paper, a more symmetrical approach to the specification of -quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.
A pointed quasigroup is said to be semicentral if it is principally isotopic to a group via a permutation on one side and a group automorphism on the other. Convex combinations of permutation matrices given by the one-sided multiplications in a semicentral quasigroup then yield doubly stochastic transition matrices of finite Markov chains in which the entropic behaviour at any time is independent of the initial state.
The semisymmetrization of an arbitrary quasigroup builds a semisymmetric quasigroup structure on the cube of the underlying set of the quasigroup. It serves to reduce homotopies to homomorphisms. An alternative semisymmetrization on the square of the underlying set was recently introduced by A. Krapež and Z. Petrić. Their construction in fact yields a Mendelsohn quasigroup, which is idempotent as well as semisymmetric. We describe it as the Mendelsohnization of the original quasigroup. For quasigroups...
The automorphisms of a quasigroup or Latin square are permutations of the set of entries of the square, and thus belong to conjugacy classes in symmetric groups. These conjugacy classes may be recognized as being annihilated by symmetric group class functions that belong to a -ideal of the special -ring of symmetric group class functions.
A natural loop structure is defined on the set of unimodular upper-triangular matrices over a given field. Inner mappings of the loop are computed. It is shown that the loop is non-associative and nilpotent, of class 3. A detailed listing of the loop conjugacy classes is presented. In particular, one of the loop conjugacy classes is shown to be properly contained in a superclass of the corresponding algebra group.
This note investigates sedenion multiplication from the standpoint of loop theory. New two-sided loops are obtained within the version of the sedenions introduced by the second author. Conditions are given for the satisfaction of standard loop-theoretical identities within these loops.
Each homogeneous space of a quasigroup affords a representation of the Bose-Mesner algebra of the association scheme given by the action of the multiplication group. The homogeneous space is said to be faithful if the corresponding representation of the Bose-Mesner algebra is faithful. In the group case, this definition agrees with the usual concept of faithfulness for transitive permutation representations. A permutation character is associated with each quasigroup permutation representation,...
A construction is given, in a variety of groups, of a ``functorial center'' called the endocenter. The endocenter facilitates the identification of universal multiplication groups of groups in the variety, addressing the problem of determining when combinatorial multiplication groups are universal.
The paper studies multilinear algebras, known as comtrans algebras, that are determined by so-called -Hermitian matrices over an arbitrary field. The main result of this paper shows that the comtrans algebra of -dimensional -Hermitian matrices furnishes a simple comtrans algebra.
Download Results (CSV)