Liftings of covariant -tensor fields to the bundle of -dimensional -velocities
Summary: The article is devoted to the question how to geometrically construct a 1-form on some non product preserving bundles by means of a 1-form on an original manifold . First, we will deal with liftings of 1-forms to higher-order cotangent bundles. Then, we will be concerned with liftings of 1-forms to the bundles which arise as a composition of the cotangent bundle with the tangent or cotangent bundle.
The authors study some geometrical constructions on the cotangent bundle from the viewpoint of natural operations. First they deduce that all natural operators transforming functions on into vector fields on are linearly generated by the Hamiltonian vector field with respect to the canonical symplectic structure of and by the Liouville vector field of . Then they determine all natural operators transforming pairs of functions on into functions on . In this case, the main generator is...
We determine all natural transformations of the rth order cotangent bundle functor into in the following cases: r = s, r < s, r > s. We deduce that all natural transformations of into itself form an r-parameter family linearly generated by the pth power transformations with p =1,...,r.
All natural affinors on the -th order cotangent bundle are determined. Basic affinors of this type are the identity affinor id of and the -th power affinors with defined by the -th power transformations of . An arbitrary natural affinor is a linear combination of the basic ones.
For natural numbers r,s,q,m,n with s≥r≤q we determine all natural functions g: T *(J (r,s,q)(Y, R 1,1)0)*→R for any fibered manifold Y with m-dimensional base and n-dimensional fibers. For natural numbers r,s,m,n with s≥r we determine all natural functions g: T *(J (r,s)(Y, R)0)*→R for any Y as above.
All natural operators T ↝ T(T ⊗ T*) lifting vector fields X from n-dimensional manifolds M to vector fields B(X) on the bundle of affinors ™ ⊗ T*M are described.
Let P be a principal fiber bundle with the basis M and with the structural group G. A trivialization of P is a section of P. It is proved that there exists only one gauge natural operator transforming trivializations of P into principal connections in P. All gauge natural operators transforming trivializations of P and torsion free classical linear connections on M into classical linear connections on P are completely described.
We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.
If is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism given by between the tangent and the cotangent bundles of . In the present note, we generalize this isomorphism to the one between the -th order vector tangent and the -th order cotangent bundles of . Next, we describe all base preserving vector bundle maps depending on a Riemannian metric in terms of natural (in ) tensor fields on .
We study how a projectable general connection in a 2-fibred manifold and a general vertical connection in induce a general connection in .
By a torsion of a general connection on a fibered manifold we understand the Frölicher-Nijenhuis bracket of and some canonical tangent valued one-form (affinor) on . Using all natural affinors on higher order cotangent bundles, we determine all torsions of general connections on such bundles. We present the geometrical interpretation and study some properties of the torsions.
If (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T∗ M given by υ → g(υ,−) between the tangent TM and the cotangent T∗ M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M ≅ Tr∗ M between the r-th order vector tangent T(r)M = (Jr(M,R)0)∗ and the r-th order cotangent Tr∗ M = Jr(M,R)0 bundles of M. Next, we describe all base preserving vector bundle maps CM(g) : T(r)M → Tr∗ M depending on a Riemannian metric g in...
We describe all canonical 2-forms Λ(ω) on the r-th order tangent bundle TM = J (;M) of a symplectic manifold (M, ω). As a corollary we deduce that all canonical symplectic structures Λ(ω) on TM over a symplectic manifold (M, ω) are of the form Λ(ω) = Σ αω for all real numbers α with α ≠ 0, where ω is the (k)-lift (in the sense of A. Morimoto) of ω to TM.
We extend the concept of r-order connections on fibred manifolds to the one of (r,s,q)-order projectable connections on fibred-fibred manifolds, where r,s,q are arbitrary non-negative integers with s ≥ r ≤ q. Similarly to the fibred manifold case, given a bundle functor F of order r on (m₁,m₂,n₁,n₂)-dimensional fibred-fibred manifolds Y → M, we construct a general connection ℱ(Γ,Λ):FY → J¹FY on FY → M from a projectable general (i.e. (1,1,1)-order) connection on Y → M by means of an (r,r,r)-order...
We prove that the problem of finding all -natural operators lifting classical linear connections ∇ on m-manifolds M to classical linear connections on the Weil bundle corresponding to a p-dimensional (over ℝ) Weil algebra A is equivalent to the one of finding all -natural operators transforming classical linear connections ∇ on m-manifolds M into base-preserving fibred maps .
Let F:ℱol → ℱℳ be a product preserving bundle functor on the category ℱol of foliated manifolds (M,ℱ) without singularities and leaf respecting maps. We describe all natural operators C transforming infinitesimal automorphisms X ∈ 𝒳(M,ℱ) of foliated manifolds (M,ℱ) into vector fields C(X)∈ 𝒳(F(M,ℱ)) on F(M,ℱ).
We reduce the problem of describing all -natural operators transforming general affine connections on -manifolds into general affine ones to the known description of all -invariant maps for .
Page 1 Next