The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Approximation de fonctions holomorphes d'un nombre infini de variables

László Lempert — 1999

Annales de l'institut Fourier

Soit X un espace de Banach complexe, et notons B ( R ) X la boule de rayon R centrée en 0 . On considère le problème d’approximation suivant: étant donnés 0 < r < R , ϵ > 0 et une fonction f holomorphe dans B ( R ) , existe-t-il toujours une fonction g , holomorphe dans X , telle que | f - g | < ϵ sur B ( r ) ? On démontre que c’est bien le cas si X est l’espace l 1 des suites sommables.

Page 1

Download Results (CSV)