Structure of Brouwer homeomorphismus. (Structure des homéomorphismes de Brouwer.)
Let be a triangulable compact manifold. We prove that, among closed subgroups of (the identity component of the group of homeomorphisms of ), the subgroup consisting of volume preserving elements is maximal.
J.-M. Gambaudo and É. Pécou introduced the "linking property" in the study of the dynamics of germs of planar homeomorphisms in order to provide a new proof of Naishul's theorem. In this paper we prove that the negation of the Gambaudo-Pécou property characterizes the topological dynamics of holomorphic parabolic germs. As a consequence, a rotation set for germs of surface homeomorphisms around a fixed point can be defined, and it turns out to be non-trivial except for countably many conjugacy classes....
Un est un homéomorphisme du plan, sans point fixe, préservant l’orientation. Le affirme qu’un tel homéomorphisme s’obtient toujours en « recollant des translations ». Dans cet article, nous introduisons un nouvel invariant de conjugaison des homéomorphismes de Brouwer, , pour tenter de décrire assez précisément la manière dont s’effectue le recollement des translations. D’une part, nous utilisons la notion d’ensemble oscillant pour montrer que des homéomorphismes de Brouwer extrêmement semblables...
We describe necessary and sufficient conditions for a fixed point free planar homeomorphism that preserves the standard Reeb foliation to embed in a planar flow that leaves the foliation invariant.
Page 1