Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Periodic solutions of nonlinear wave equations with non-monotone forcing terms

Massimiliano BertiLuca Biasco — 2005

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Existence and regularity of periodic solutions of nonlinear, completely resonant, forced wave equations is proved for a large class of non-monotone forcing terms. Our approach is based on a variational Lyapunov-Schmidt reduction. The corresponding infinite dimensional bifurcation equation exhibits an intrinsic lack of compactness. This difficulty is overcome finding a-priori estimates for the constrained minimizers of the reduced action functional, through techniques inspired by regularity theory...

Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics

Luca BiascoLuigi Chierchia — 2002

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The classical D’Alembert Hamiltonian model for a rotational oblate planet revolving near a «day-year» resonance around a fixed star on a Keplerian ellipse is considered. Notwithstanding the strong degeneracies of the model, stability results a là Nekhoroshev (i.e. for times which are exponentially long in the perturbative parameters) for the angular momentum of the planet hold.

Periodic orbits close to elliptic tori and applications to the three-body problem

Massimiliano BertiLuca BiascoEnrico Valdinoci — 2004

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses...

Optimal stability and instability results for a class of nearly integrable Hamiltonian systems

Massimiliano BertiLuca BiascoPhilippe Bolle — 2002

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) O µ -perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time T d = O 1 / μ log 1 / μ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time T d is optimal as a consequence of a general stability result proved via classical perturbation...

Page 1

Download Results (CSV)