Teoría de sistemas de infinitas ecuaciones lineales y programación semi-infinita.
We are concerned with the Lipschitz modulus of the optimal set mapping associated with canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a lower and an upper bound for this modulus, both of them given exclusively in terms of the problem’s data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably simplified...
En este trabajo aplicamos la teoría de Dubovickii y Miljutin para deducir una condición necesaria de optimalidad relativa al problema de Programación Semi-Infinita convexa no diferenciable, asumiendo la cualificación de Slater. Se introduce así un nuevo procedimiento para verificar la validez de esta cualificación.
We are concerned with the Lipschitz modulus of the optimal set mapping associated with canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a lower and an upper bound for this modulus, both of them given exclusively in terms of the problem's data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably simplified...
Dado un Problema de Programación Semi-Infinita, si se puede obtener una representación finita del conjunto factible, pueden aplicarse para resolver el problema los métodos de programación con restricciones finitas. En la primera parte se caracterizan los sistemas lineales infinitos que pueden ser reducidos a un sistema finito equivalente, dándose además condiciones suficientes y métodos para efectuar tal reducción. En la segunda parte se establecen diferentes procedimientos de obtención...
We propose new alternative theorems for convex infinite systems which constitute the generalization of the corresponding to Gale, Farkas, Gordan and Motzkin. By means of these powerful results we establish new approaches to the Theory of Infinite Linear Inequality Systems, Perfect Duality, Semi-infinite Games and Optimality Theory for non-differentiable convex Semi-Infinite Programming Problem.
This paper provides KKT and saddle point optimality conditions, duality theorems and stability theorems for consistent convex optimization problems posed in locally convex topological vector spaces. The feasible sets of these optimization problems are formed by those elements of a given closed convex set which satisfy a (possibly infinite) convex system. Moreover, all the involved functions are assumed to be convex, lower semicontinuous and proper (but not necessarily real-valued). The key result...
Page 1