Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Derivation of Hartree’s theory for mean-field Bose gases

Mathieu Lewin — 2013

Journées Équations aux dérivées partielles

This article is a review of recent results with Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty and Jan Philip Solovej. We consider a system of N bosons with an interaction of intensity 1 / N (mean-field regime). In the limit N , we prove that the first order in the expansion of the eigenvalues of the many-particle Hamiltonian is given by the nonlinear Hartree theory, whereas the next order is predicted by the Bogoliubov Hamiltonian. We also discuss the occurrence of Bose-Einstein condensation in these...

Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov

Mathieu Lewin

Séminaire Laurent Schwartz — EDP et applications

Nous étudions le spectre du Hamiltonien d’un gaz de bosons, à la limite d’un grand nombre N de particules et dans le régime de champ moyen (l’interaction est multipliée par 1 / N ). Le premier terme du développement est donné par le modèle non linéaire de Hartree, alors que le second terme est donné par la théorie de Bogoliubov.

Sur l’effondrement dynamique des étoiles quantiques pseudo-relativistes

Mathieu Lewin

Séminaire Laurent Schwartz — EDP et applications

Dans cet exposé, je présente plusieurs modèles quantiques non linéaires permettant de décrire certaines étoiles. Je m’intéresse tout particulièrement à l’effondrement gravitationnel des étoiles trop lourdes, un phénomène modélisé par des solutions qui explosent en temps fini. Je montre l’existence de telles solutions et je décris plusieurs de leurs propriétés au temps d’explosion.

A numerical perspective on Hartree−Fock−Bogoliubov theory

Mathieu LewinSéverine Paul — 2014

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The method of choice for describing attractive quantum systems is Hartree−Fock−Bogoliubov (HFB) theory. This is a nonlinear model which allows for the description of , the main explanation for the superconductivity of certain materials at very low temperature. This paper is the first study of Hartree−Fock−Bogoliubov theory from the point of view of numerical analysis. We start by discussing its proper discretization and then analyze the convergence of the simple fixed point (Roothaan) algorithm....

On the binding of polarons in a mean-field quantum crystal

Mathieu LewinNicolas Rougerie — 2013

ESAIM: Control, Optimisation and Calculus of Variations

We consider a multi-polaron model obtained by coupling the many-body Schrödinger equation for interacting electrons with the energy functional of a mean-field crystal with a localized defect, obtaining a highly non linear many-body problem. The physical picture is that the electrons constitute a charge defect in an otherwise perfect periodic crystal. A remarkable feature of such a system is the possibility to form a bound state of electrons via their interaction with the polarizable background....

Two Hartree-Fock models for the vacuum polarization

Philippe GravejatChristian HainzlMathieu LewinÉric Séré — 2012

Journées Équations aux dérivées partielles

We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.

Strichartz inequality for orthonormal functions

Rupert FrankMathieu LewinElliott H. LiebRobert Seiringer — 2014

Journal of the European Mathematical Society

We prove a Strichartz inequality for a system of orthonormal functions, with an optimal behavior of the constant in the limit of a large number of functions. The estimate generalizes the usual Strichartz inequality, in the same fashion as the Lieb-Thirring inequality generalizes the Sobolev inequality. As an application, we consider the Schrödinger equation in a time-dependent potential and we show the existence of the wave operator in Schatten spaces.

Page 1

Download Results (CSV)