The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Dans cet article on étudie les -modules dont le support singulier est un croisement normal dans , par l’intermédiaire de la catégorie équivalente de faisceaux pervers. On montre qu’ils sont caractérisés, à isomorphisme près, par la donnée suivante : un hypercube constitué par des espaces vectoriels de dimension finie indexés par les parties de , et des applications linéaires soumises à certaines conditions de commutativité et d’inversibilité. Ce résultat est exprimé sous forme d’une équivalence...
Nous commençons par indiquer comment la connaissance du degré d’un opérateur différentiel, unitaire en et annulant , permet de donner un algorithme de calcul du polynôme de Bernstein d’un germe de fonction analytique à singularité isolée.
Nous étudions alors le cas d’une singularité non dégénérée par rapport à son polygôme de Newton; nous donnons un algorithme pour calculer le polynôme de Bernstein de ces singularités et l’équation fonctionnelle associée. Notre méthode utilise une...
A complex hypersurface in is a linear free divisor (LFD) if its module of logarithmic vector fields has a global basis of linear vector fields. We classify all LFDs for at most .
By analogy with Grothendieck’s comparison theorem, we say that the global logarithmic comparison theorem (GLCT) holds for if the complex of global logarithmic differential forms computes the complex cohomology of . We develop a general criterion for...
Download Results (CSV)