Géométrie des schémas de Hilbert ponctuels
Dans cet article on étudie les -modules dont le support singulier est un croisement normal dans , par l’intermédiaire de la catégorie équivalente de faisceaux pervers. On montre qu’ils sont caractérisés, à isomorphisme près, par la donnée suivante : un hypercube constitué par des espaces vectoriels de dimension finie indexés par les parties de , et des applications linéaires soumises à certaines conditions de commutativité et d’inversibilité. Ce résultat est exprimé sous forme d’une équivalence...
Nous commençons par indiquer comment la connaissance du degré d’un opérateur différentiel, unitaire en et annulant , permet de donner un algorithme de calcul du polynôme de Bernstein d’un germe de fonction analytique à singularité isolée. Nous étudions alors le cas d’une singularité non dégénérée par rapport à son polygôme de Newton; nous donnons un algorithme pour calculer le polynôme de Bernstein de ces singularités et l’équation fonctionnelle associée. Notre méthode utilise une...
A complex hypersurface in is a
Page 1