The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Équations diophantiennes polynomiales à hautes multiplicités

Michel Langevin — 2001

Journal de théorie des nombres de Bordeaux

On montre comment écrire de grandes familles, avec de hautes multiplicités, de cas d’égalité A + B = C pour l’inégalité de Stothers-Mason (si A ( X ) , B ( X ) , C ( X ) sont des polynômes premiers entre eux, le nombre exact de racines du produit A B C dépasse de 1 le plus grand des degrés des composantes A , B , C ) . On développera pour cela des techniques polynomiales itératives inspirées des décompositions de Dunford-Schwartz et de fonctions de Belyi. Des exemples d’application avec les conjectures ( a b c ) ou de M. Hall sont développés.

Imbrications entre le théorème de Mason, la descente de Belyi et les différentes formes de la conjecture ( a b c )

Michel Langevin — 1999

Journal de théorie des nombres de Bordeaux

Soient A , B , C = A + B trois éléments de l’ensemble * des entiers > 0 (resp. [ X ] ) des polynômes complexes) premiers entre eux ; on note r ( A B C ) le produit des facteurs premiers (resp. le nombre des facteurs premiers dans [ X ] ) du produit A B C . La conjecture ( a b c ) énonce que, pour tout ϵ > 0 , il existe C ϵ > 0 pour lequel l’inégalité : r ( A B C ) C ϵ S 1 - ϵ avec S = max ( A , B , C ) ) est toujours vérifiée. Le théorème de Mason établit l’inégalité, D (supposé > 0 ) désignant le plus grand des degrés des polynômes A , B , C : r ( A B C ) D + 1 . Les cas de triplets de polynômes où l’égalité...

Quelques remarques sur les familles canoniques de polynômes générateurs pour l'exponentielle

Michel Langevin — 1997

Annales de l'institut Fourier

Soit K un corps commutatif. Chercher une série formelle S ( X , T ) K [ [ X , T ] ] vérifiant S ( X + Y , T ) / S ( X , T ) K [ [ Y , T ] ] conduit naturellement à étudier l’application U ( T ) ( U ( T ) ) X , U ( T ) étant une unité de l’algèbre K [ [ T ] ] , et à ramener les solutions à la forme S ( X , T ) = n 0 H n ( X ) T n , ( H n ( X ) ) étant une suite de K [ X ] vérifiant les “identités multinomiales” : ( μ ) H n ( X 1 + ... + X k ) = α 1 + ... + α k = n H α 1 ( X 1 ) ... H α k ( X k ) ( n , k 0 ) . Après mise à l’écart par des lemmes combinatoires du cas caract ( K ) > 0 (les solutions sont triviales), on caractérise de plusieurs manières les solutions. On peut les faire coïncider avec l’ensemble NW des suites de polynômes...

Solution des problèmes de Favard

Michel Langevin — 1988

Annales de l'institut Fourier

Pour tout c < 2 , on calcule un rang D ( c ) tel que tout entier algébrique x de degré au moins D ( c ) ait deux conjugués x ' , x ' ' vérifiant | x ' - x ' ' | c . De plus, on donne une nouvelle preuve de l’égalité D ( 3 ) = 2 .

Page 1

Download Results (CSV)