Le problème de Skorokhod : une remarque sur la démonstration d'Azéma-Yor
Étant donné un opérateur différentiel d’ordre sur un ouvert de , un compact de , et , nous montrons que toute solution de “ sur ” est solution de “ sur ” dès que la -capacité de est nulle. Cette condition s’avère nécessaire quand est un opérateur elliptique d’ordre 2. Dans ce cas, nous montrons aussi que où est une mesure de Radon bornée sur , a une solution si et seulement si ne charge pas les ensembles de -capacité nulle.
We prove the equivalence of various capacitary strong type estimates. Some of them appear in the characterization of the measures that are admissible data for the existence of solutions to semilinear elliptic problems with power growth. Other estimates are known to characterize the measures for which the Sobolev space can be imbedded into . The motivation comes from the semilinear problems: simpler descriptions of admissible data are given. The proof surprisingly involves the theory of singular...
We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy functional. We analyze a problem arising when looking at the positivity of the second derivative in order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity- holds, it does for a weaker norm than the norm for which the functional is twice differentiable and local optimality cannot be deduced. We solve this problem for a particular but significant example. We...
Page 1