The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

Singularités éliminables pour des équations semi-linéaires

Pierre BarasMichel Pierre — 1984

Annales de l'institut Fourier

Étant donné L un opérateur différentiel d’ordre m sur un ouvert Ω de R N , K un compact de Ω , γ > 1 et γ ' = γ / ( γ - 1 ) , nous montrons que toute solution de “ L u + u γ = 0 sur Ω K , u 0 ” est solution de “ L u + u γ = 0 sur Ω ” dès que la W m , γ ' -capacité de K est nulle. Cette condition s’avère nécessaire quand L est un opérateur elliptique d’ordre 2. Dans ce cas, nous montrons aussi que ` ` L u + u | u | γ - 1 = μ , u | Ω = 0 ' ' μ est une mesure de Radon bornée sur Ω , a une solution si et seulement si μ ne charge pas les ensembles de W 2 , γ ' -capacité nulle.

Capacitary strong type estimates in semilinear problems

D. AdamsMichel Pierre — 1991

Annales de l'institut Fourier

We prove the equivalence of various capacitary strong type estimates. Some of them appear in the characterization of the measures μ that are admissible data for the existence of solutions to semilinear elliptic problems with power growth. Other estimates are known to characterize the measures μ for which the Sobolev space W 2 , p can be imbedded into L p ( μ ) . The motivation comes from the semilinear problems: simpler descriptions of admissible data are given. The proof surprisingly involves the theory of singular...

About stability of equilibrium shapes

Marc DambrineMichel Pierre — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy functional. We analyze a problem arising when looking at the positivity of the second derivative in order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity- holds, it does for a weaker norm than the norm for which the functional is twice differentiable and local optimality cannot be deduced. We solve this problem for a particular but significant example. We...

Page 1

Download Results (CSV)