In the present paper a generalized Kählerian space of the first kind is considered as a generalized Riemannian space with almost complex structure that is covariantly constant with respect to the first kind of covariant derivative. Using a non-symmetric metric tensor we find necessary and sufficient conditions for geodesic mappings with respect to the four kinds of covariant derivatives. These conditions have the form of a closed system of partial differential equations in covariant derivatives...
In this paper we define generalized Kählerian spaces of the first kind given by (2.1)–(2.3). For them we consider hollomorphically projective mappings with invariant complex structure. Also, we consider equitorsion geodesic mapping between these two spaces ( and ) and for them we find invariant geometric objects.
We study -almost geodesic mappings of the second type , between non-symmetric affine connection spaces. These mappings are a generalization of the second type almost geodesic mappings defined by N. S. Sinyukov (1979). We investigate a special type of these mappings in this paper. We also consider -structures that generate mappings of type , . For a mapping , , we determine the basic equations which generate them.
Download Results (CSV)