Courbes de genre géométrique borné sur une surface de type général
The postulation of Aritméticamente Cohen-Macaulay (ACM) subschemes of the projective space PkN is well known in the case of codimension 2. There are many different ways of recording this numerical information: numerical character of Gruson/Peskine, h-vector, postulation character of Martin-Deschamps/Perrin... The first aim of this paper is to show the equivalence of these notions. The second and most important aim, is to study the postulation of codimension 3 ACM subschemes of PN. We use a result...
Soient un fibré de rang 2 sur l’espace projectif de dimension 3 sur un corps algébriquement clos et un entier tel que et . Toute courbe schéma des zéros d’une section non nulle de est une courbe minimale dans sa classe de biliaison.
Un théorème de Strano montre que si une courbe gauche localement Cohen-Macaulay n’est pas minimale dans sa classe de biliaison, elle admet une biliaison élémentaire strictement décroissante. R. Hartshorne a récemment donné une nouvelle preuve de ce résultat en le plaçant dans un contexte plus général. Dans cet article on apporte une précision, en utilisant les techniques introduites par Hartshorne : on montre que si un sous-schéma de codimension localement Cohen-Macaulay de n’est pas minimal...
On généralise ici un théorème de Grauert-Manin pour les courbes (problème de Mordell pour les corps de fonctions). Soit un corps de fonctions algébriques sur un corps algébriquement clos de caractéristique 0, une variété propre et lisse sur , dont le fibré cotangent est ample; si l’ensemble de ses points rationnels est Zariski-dense, la variété se redescend sur .
Page 1