The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Boundary trace of positive solutions of nonlinear elliptic inequalities

Moshe MarcusLaurent Véron — 2004

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We develop a new method for proving the existence of a boundary trace, in the class of Borel measures, of nonnegative solutions of - Δ u + g ( x , u ) 0 in a smooth domain Ω under very general assumptions on g . This new definition which extends the previous notions of boundary trace is based upon a sweeping technique by solutions of Dirichlet problems with measure boundary data. We also prove a boundary pointwise blow-up estimate of any solution of such inequalities in terms of the Poisson kernel. If the nonlinearity...

Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion

Moshe MarcusLaurent Véron — 2004

Journal of the European Mathematical Society

Let Ω be a bounded domain of class C 2 in N and let K be a compact subset of Ω . Assume that q ( N + 1 ) / ( N 1 ) and denote by U K the maximal solution of Δ u + u q = 0 in Ω which vanishes on Ω K . We obtain sharp upper and lower estimates for U K in terms of the Bessel capacity C 2 / q , q ' and prove that U K is σ -moderate. In addition we describe the precise asymptotic behavior of U K at points σ K , which depends on the “density” of K at σ , measured in terms of the capacity C 2 / q , q ' .

Page 1

Download Results (CSV)