Soit C(X,Y) l’ensemble des opérateurs fermés à domaines denses dans l’espace de Banach X à valeurs dans l’espace de Banach Y, muni de la métrique du gap. Soit et , où α (T) est la dimension du noyau de T. Nous montrons que est un ouvert de (et donc ouvert dans C(X,Y)) et que est dense dans . Nous déduisons quelques résultats de densités. A la fin de se travail nous donnons un exemple d’espace de Banach X tel que, d’une part, n’est pas connexe dans B(X) et d’autre part, l’ensemble des...
Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For an operator T in B(H), let σ(T) denote the generalized spectrum of T. In this paper, we prove that if φ: B(H) → B(H) is a surjective linear map, then φ preserves the generalized spectrum (i.e. σ(φ(T)) = σ(T) for every T ∈ B(H)) if and only if there is A ∈ B(H) invertible such that either φ(T) = ATA for every T ∈ B(H), or φ(T) = ATA for every T ∈ B(H). Also, we prove that...
Commutativity and continuity conditions for the Moore-Penrose inverse and the "conorm" are established in a C*-algebra; moreover, spectral permanence and B*-properties for the conorm are proved.
Pour un opérateur T borné sur un espace de Hilbert dans lui-même, nous montrons que , où γ est la conorme (the reduced minimum modulus) et π(T) est la classe de T dans l’algèbre de Calkin. Nous montrons aussi que ce supremum est atteint. D’autre part, nous montrons que les opérateurs semi-Fredholm caractérisent les points de continuité de l’application T → γ (π(T)).
We investigate when a C*-algebra element generates a closed ideal, and discuss Moore-Penrose and commuting generalized inverses.
We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.
We study similarity to partial isometries in C*-algebras as well as their relationship with generalized inverses. Most of the results extend some recent results regarding partial isometries on Hilbert spaces. Moreover, we describe partial isometries by means of interpolation polynomials.
For a fixed n > 2, we study the set Λ of generalized idempotents, which are operators satisfying T n+1 = T. Also the subsets Λ†, of operators such that T n−1 is the Moore-Penrose pseudo-inverse of T, and Λ*, of operators such that T n−1 = T* (known as generalized projections) are studied. The local smooth structure of these sets is examined.
Let P,Q be two linear idempotents on a Banach space. We show that the closedness of the range and complementarity of the kernel (range) of linear combinations of P and Q are independent of the choice of coefficients. This generalizes known results and shows that many spectral properties of linear combinations do not depend on their coefficients.
Download Results (CSV)