In this paper, we are concerned with G-rings. We generalize the Kaplansky’s theorem to rings with zero-divisors. Also, we assert that if is a ring extension such that for some regular element of , then is a G-ring if and only if so is . Also, we examine the transfer of the G-ring property to trivial ring extensions. Finally, we conclude the paper with illustrative examples discussing the utility and limits of our results.
In this paper, we study the class of
rings in which every flat ideal is
projective. We investigate the stability
of this property under homomorphic image,
and its transfer to various contexts
of constructions such as direct products,
and trivial ring extensions. Our results
generate examples which enrich the
current literature with new and original
families of rings that satisfy this
property.
Let and be two ring homomorphisms and let and be ideals of and , respectively, such that . In this paper, we investigate the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of with along with respect to (denoted by introduced and studied by S. Kabbaj, K. Louartiti and M. Tamekkante in 2013. Our results recover well known results on amalgamations in C. A. Finocchiaro (2014) and generate new original examples of rings possessing these properties.
Let be a commutative ring with a nonzero identity. In this study, we present a new class of ideals lying properly between the class of -ideals and the class of -ideals. A proper ideal of is said to be a quasi -ideal if is an -ideal of Many examples and results are given to disclose the relations between this new concept and others that already exist, namely, the -ideals, the quasi primary ideals, the -ideals and the -ideals. Moreover, we use the quasi -ideals to characterize some...
This paper deals with the rings which satisfy condition. This notion has been introduced recently by R. Dastanpour and A. Ghorbani (2017) as a generalization of Artnian rings. It is of interest to investigate more deeply this class of rings. This study focuses on commutative case. In this vein, we present this work in which we examine the transfer of these rings to the trivial, amalgamation and polynomial ring extensions. We also investigate the relationship between this class of rings and the...
This paper aims at the study of the notions of periodic, UU and semiclean properties in various context of commutative rings such as trivial ring extensions, amalgamations and pullbacks. The results obtained provide new original classes of rings subject to various ring theoretic properties.
Download Results (CSV)