Consider the following conditions. (a) Every regular LB-space is complete; (b) if an operator T between complete LB-spaces maps bounded sets into relatively compact sets, then T factorizes through a Montel LB-space; (c) for every complete LB-space E the space C (βℕ, E) is bornological. We show that (a) ⇒ (b) ⇒ (c). Moreover, we show that if E is Montel, then (c) holds. An example of an LB-space E with a strictly increasing transfinite sequence of its Mackey derivatives is given.
Fréchet spaces of strongly, weakly and weak*-continuous Fréchet space valued functions are considered. Complete solutions are given to the problems of their injectivity or embeddability as complemented subspaces in dual Fréchet spaces.
The splitting problem is studied for short exact sequences consisting of countable projective limits of DFN-spaces (*) 0 → F → X → G → 0, where F or G are isomorphic to the space of distributions D'. It is proved that every sequence (*) splits for F ≃ D' iff G is a subspace of D' and that, for ultrabornological F, every sequence (*) splits for G ≃ D' iff F is a quotient of D'
We will show that for each sequence of quasinormable Fréchet spaces there is a Köthe space λ such that and there are exact sequences of the form . If, for a fixed ℕ, is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form . The result has some applications in the theory of the functor in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.
For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator , , on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus we characterize when is Fredholm or is an into isomorphism. We also study cyclic phenomena for the adjoint map .
We characterize all Fréchet quotients of the space (Ω) of (complex-valued) real-analytic functions on an arbitrary open set . We also characterize those Fréchet spaces E such that every short exact sequence of the form 0 → E → X → (Ω) → 0 splits.
We prove the following common generalization of Maurey's extension theorem and Vogt's (DN)-(Omega) splitting theorem for Fréchet spaces: if T is an operator from a subspace E of a Fréchet space G of type 2 to a Fréchet space F of dual type 2, then T extends to a map from G into F'' whenever G/E satisfies (DN) and F satisfies (Omega).
Download Results (CSV)