Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Relaxation of non convex variational problems

Paolo MarcelliniCarlo Sbordone — 1977

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Si danno condizioni necessarie affinché un integrale del calcolo delle variazioni risulti sequenzialmente semicontinuo inferiormente nella topologia debole di H 1 , α e si prova che il massimo funzionale semicontinuo inferiormente minorante è ancora un integrale del calcolo delle variazioni. Ne consegue un teorema di «rilassamento» nel senso di Ekeland e Temam [1].

An existence result for a nonconvex variational problem via regularity

Irene FonsecaNicola FuscoPaolo Marcellini — 2002

ESAIM: Control, Optimisation and Calculus of Variations

Local Lipschitz continuity of minimizers of certain integrals of the Calculus of Variations is obtained when the integrands are convex with respect to the gradient variable, but are not necessarily uniformly convex. In turn, these regularity results entail existence of minimizers of variational problems with non-homogeneous integrands nonconvex with respect to the gradient variable. The x -dependence, explicitly appearing in the integrands, adds significant technical difficulties in the proof.

Topological degree, Jacobian determinants and relaxation

Irene FonsecaNicola FuscoPaolo Marcellini — 2005

Bollettino dell'Unione Matematica Italiana

A characterization of the total variation T V u , Ω of the Jacobian determinant det D u is obtained for some classes of functions u : Ω R n outside the traditional regularity space W 1 , n Ω ; R n . In particular, explicit formulas are deduced for functions that are locally Lipschitz continuous away from a given one point singularity x 0 Ω . Relations between T V u , Ω and the distributional determinant Det D u are established, and an integral representation is obtained for the relaxed energy of certain polyconvex functionals at maps u W 1 , p Ω ; R n W 1 , Ω x 0 ; R n .

An existence result for a nonconvex variational problem via regularity

Irene FonsecaNicola FuscoPaolo Marcellini — 2010

ESAIM: Control, Optimisation and Calculus of Variations

Local Lipschitz continuity of minimizers of certain integrals of the Calculus of Variations is obtained when the integrands are convex with respect to the gradient variable, but are . In turn, these regularity results entail existence of minimizers of variational problems with non-homogeneous integrands with respect to the gradient variable. The -dependence, explicitly appearing in the integrands, adds significant technical difficulties in the proof.

Page 1

Download Results (CSV)