We present a construction from ♢* of a first countable, regular, countably metacompact space with a closed discrete subspace that is not a . In addition some nonperfect spaces with σ-disjoint bases are constructed.
We consider the question: when does a Ψ-space satisfy property (a)? We show that if then the Ψ-space Ψ(A) satisfies property (a), but in some Cohen models the negation of CH holds and every uncountable Ψ-space fails to satisfy property (a). We also show that in a model of Fleissner and Miller there exists a Ψ-space of cardinality which has property (a). We extend a theorem of Matveev relating the existence of certain closed discrete subsets with the failure of property (a).
We introduce a two player topological game and study the relationship of the existence of winning strategies to base properties and covering properties of the underlying space. The existence of a winning strategy for one of the players is conjectured to be equivalent to the space have countable network weight. In addition, connections to the class of D-spaces and the class of hereditarily Lindelöf spaces are shown.
Players ONE and TWO play the following game: In the nth inning ONE chooses a set from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset of X. The players must obey the rule that for each n. TWO wins if the intersection of TWO’s sets is equal to the union of ONE’s sets. If ONE has no winning strategy, then each element of ℱ is a -set. To what extent is the converse true? We show that:
(A) For ℱ the collection of countable subsets of X:
1. There are subsets...
Natural weakenings of uniformizability of a ladder system on ω₁ are considered. It is shown that even assuming CH all the properties may be distinct in a strong sense. In addition, these properties are studied in conjunction with other properties inconsistent with full uniformizability, which we call anti-uniformization properties. The most important conjunction considered is the uniformization property we call countable metacompactness and the anti-uniformization property we call thinness. The...
Given a metric space ⟨X,ρ⟩, consider its hyperspace of closed sets CL(X) with the Wijsman topology . It is known that is metrizable if and only if X is separable, and it is an open question by Di Maio and Meccariello whether this is equivalent to being normal. We prove that if the weight of X is a regular uncountable cardinal and X is locally separable, then is not normal. We also solve some questions by Cao, Junnila and Moors regarding isolated points in Wijsman hyperspaces.
We construct from ⋄ a T₂ example of a hereditarily Lindelöf space X that is not a D-space but is the union of two subspaces both of which are D-spaces. This answers a question of Arhangel'skii.
The Katětov ordering of two maximal almost disjoint (MAD) families and is defined as follows: We say that if there is a function such that for every . In [Garcia-Ferreira S., Hrušák M., Ordering MAD families a la Katětov, J. Symbolic Logic 68 (2003), 1337–1353] a MAD family is called -uniform if for every , we have that . We prove that CH implies that for every -uniform MAD family there is a -point of such that the set of all Rudin-Keisler predecessors of is dense in the...
We study the relation between the Hurewicz and Menger properties of filters considered topologically as subspaces of with the Cantor set topology.
We show that if is an uncountable AD (almost disjoint) family of subsets of then the space does not admit a continuous selection; moreover, if is maximal then does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.
Download Results (CSV)