Metodi di Passo Montano e Linking per disequazioni variazionali semilineari ellittiche: risultati di esistenza, stabilità e molteplicità
In this paper we prove the existence of periodic solutions for nonlinear impulsive viable problems monitored by differential inclusions of the type x′(t)∈F(t,x(t))+G(t,x(t)). Our existence theorems extend, in a broad sense, some propositions proved in [10] and improve a result due to Hristova-Bainov in [13].
In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.
In this note we prove the existence of extremal solutions of the quasilinear Neumann problem , a.e. on , , in the order interval , where and are respectively a lower and an upper solution of the Neumann problem.
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all . Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper...
Page 1