The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 36

Showing per page

Order by Relevance | Title | Year of publication

Sur un exemple de Banach et Kuratowski

Robert Cauty — 1994

Fundamenta Mathematicae

For A ⊂ I = [0,1], let L A be the set of continuous real-valued functions on I which vanish on a neighborhood of A. We prove that if A is an analytic subset which is not an F σ and whose closure has an empty interior, then L A is homeomorphic to the space of differentiable functions from I into ℝ.

Un exemple d'ensembles absorbants non équivalents

Robert Cauty — 1991

Fundamenta Mathematicae

We give an example in the Hilbert space 2 of two subsets which are absorbing for the class of topologically complete spaces, but for which there exists no homeomorphism of 2 onto itself mapping one of these subsets onto the other.

Sur deux espaces de fonctions non dérivables

Robert Cauty — 1992

Fundamenta Mathematicae

Let D (resp. D*) be the subspace of C = C([0,1], R) consisting of differentiable functions (resp. of functions differentiable at the one point at least). We give topological characterizations of the pairs (C, D) and (C, D*) and use them to give some examples of spaces homeomorphic to CDor to CD*.

Sur les ouverts des CW-complexes et les fibrés de Serre

Robert Cauty — 1992

Colloquium Mathematicae

M. Steinberger et J. West ont prouvé dans [7] qu’un fibré de Serre p:E → B entre CW-complexes a la propriété de relèvement des homotopies par rapport aux k-espaces. Malheureusement, leur démonstration contient une légère erreur. Ils affirment que certains ensembles (notés U et p - 1 U × U ) sont des CW-complexes car ce sont des ouverts de CW-complexes. Ceci est généralement faux, et notre premier objectif dans cette note est de donner des exemples d’ouverts de CW-complexes n’admettant aucune décomposition...

Page 1 Next

Download Results (CSV)