The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 28

Showing per page

Order by Relevance | Title | Year of publication

Existence of positive solutions for second order m-point boundary value problems

Ruyun Ma — 2002

Annales Polonici Mathematici

Let α,β,γ,δ ≥ 0 and ϱ:= γβ + αγ + αδ > 0. Let ψ(t) = β + αt, ϕ(t) = γ + δ - γt, t ∈ [0,1]. We study the existence of positive solutions for the m-point boundary value problem ⎧u” + h(t)f(u) = 0, 0 < t < 1, ⎨ α u ( 0 ) - β u ' ( 0 ) = i = 1 m - 2 a i u ( ξ i ) γ u ( 1 ) + δ u ' ( 1 ) = i = 1 m - 2 b i u ( ξ i ) , where ξ i ( 0 , 1 ) , a i , b i ( 0 , ) (for i ∈ 1,…,m-2) are given constants satisfying ϱ - i = 1 m - 2 a i ϕ ( ξ i ) > 0 , ϱ - i = 1 m - 2 b i ψ ( ξ i ) > 0 and Δ : = - i = 1 m - 2 a i ψ ( ξ i ) ϱ - i = 1 m - 2 a i ϕ ( ξ i ) ϱ - i = 1 m - 2 b i ψ ( ξ i ) - i = 1 m - 2 b i ϕ ( ξ i ) < 0 . We show the existence of positive solutions if f is either superlinear or sublinear by a simple application of a fixed point theorem in cones. Our result extends a result established by Erbe and Wang for two-point...

Nodal solutions for a second-order m -point boundary value problem

Ruyun Ma — 2006

Czechoslovak Mathematical Journal

We study the existence of nodal solutions of the m -point boundary value problem u ' ' + f ( u ) = 0 , 0 < t < 1 , u ' ( 0 ) = 0 , u ( 1 ) = i = 1 m - 2 α i u ( η i ) where η i ( i = 1 , 2 , , m - 2 ) with 0 < η 1 < η 2 < < η m - 2 < 1 , and α i ( i = 1 , 2 , , m - 2 ) with α i > 0 and 0 < i = 1 m - 2 α i < 1 . We give conditions on the ratio f ( s ) / s at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.

Global structure of positive solutions for superlinear 2 m th-boundary value problems

Ruyun MaYulian An — 2010

Czechoslovak Mathematical Journal

We consider boundary value problems for nonlinear 2 m th-order eigenvalue problem ( - 1 ) m u ( 2 m ) ( t ) = λ a ( t ) f ( u ( t ) ) , 0 < t < 1 , u ( 2 i ) ( 0 ) = u ( 2 i ) ( 1 ) = 0 , i = 0 , 1 , 2 , , m - 1 . where a C ( [ 0 , 1 ] , [ 0 , ) ) and a ( t 0 ) > 0 for some t 0 [ 0 , 1 ] , f C ( [ 0 , ) , [ 0 , ) ) and f ( s ) > 0 for s > 0 , and f 0 = , where f 0 = lim s 0 + f ( s ) / s . We investigate the global structure of positive solutions by using Rabinowitz’s global bifurcation theorem.

Existence of one-signed solutions of nonlinear four-point boundary value problems

Ruyun MaRuipeng Chen — 2012

Czechoslovak Mathematical Journal

In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems - u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) and u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) , where ε ( 0 , 1 / 2 ) , M ( 0 , ) is a constant and r > 0 is a parameter, g C ( [ 0 , 1 ] , ( 0 , + ) ) , f C ( , ) with s f ( s ) > 0 for s 0 . The proof of the main results is based upon bifurcation techniques.

S -shaped component of nodal solutions for problem involving one-dimension mean curvature operator

Ruyun MaZhiqian HeXiaoxiao Su — 2023

Czechoslovak Mathematical Journal

Let E = { u C 1 [ 0 , 1 ] : u ( 0 ) = u ( 1 ) = 0 } . Let S k ν with ν = { + , - } denote the set of functions u E which have exactly k - 1 interior nodal zeros in (0, 1) and ν u be positive near 0 . We show the existence of S -shaped connected component of S k ν -solutions of the problem u ' 1 - u ' 2 ' + λ a ( x ) f ( u ) = 0 , x ( 0 , 1 ) , u ( 0 ) = u ( 1 ) = 0 , where λ > 0 is a parameter, a C ( [ 0 , 1 ] , ( 0 , ) ) . We determine the intervals of parameter λ in which the above problem has one, two or three S k ν -solutions. The proofs of the main results are based upon the bifurcation technique.

Page 1 Next

Download Results (CSV)