In this paper we use the upper and lower solutions method to investigate the existence of solutions of a class of impulsive partial hyperbolic differential inclusions at fixed moments of impulse involving the Caputo fractional derivative. These results are obtained upon suitable fixed point theorems.
In this paper, we present some results concerning the existence and the attractivity of solutions for some functional integral equations of Riemann-Liouville fractional order, by using an extension of the Burton-Kirk fixed point theorem in the case of a Fréchet space.
In this paper we investigate the global existence and uniqueness of solutions for the initial value problems (IVP for short), for a class of implicit hyperbolic fractional order differential equations by using a nonlinear alternative of Leray-Schauder type for contraction maps on Fréchet spaces.
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
This paper deals with the existence of solutions to some classes of partial impulsive hyperbolic differential inclusions with variable times involving the Caputo fractional derivative. Our works will be considered by using the nonlinear alternative of Leray-Schauder type.
In this paper we use the upper and lower solutions method combined with Schauder's fixed point theorem and a fixed point theorem for condensing multivalued maps due to Martelli to investigate the existence of solutions for some classes of partial Hadamard fractional integral equations and inclusions.
In this paper, we use the upper and lower solutions method combined with a fixed point theorem for multivalued maps in Banach algebras due to Dhage for investigations of the existence of solutions of a class of discontinuous partial differential inclusions with not instantaneous impulses. Also, we study the existence of extremal solutions under Lipschitz, Carath´eodory and certain monotonicity conditions
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
This article deals with some results about the existence of solutions and bounded solutions and the attractivity for a class of fractional -difference equations. Some applications are made of Schauder fixed point theorem in Banach spaces and Darbo fixed point theorem in Fréchet spaces. We use some technics associated with the concept of measure of noncompactness and the diagonalization process. Some illustrative examples are given in the last section.
We discuss the existence of solutions and Ulam's type stability concepts for a class of partial functional fractional differential inclusions with noninstantaneous impulses and a nonconvex valued right hand side in Banach spaces. An example is provided to illustrate our results.
MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11
This paper deals with the existence and uniqueness of solutions of two classes of partial impulsive hyperbolic differential equations with fixed time impulses and state-dependent delay involving the Caputo fractional derivative. Our results are obtained upon suitable fixed point theorems.
Download Results (CSV)