The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 312

Showing per page

Order by Relevance | Title | Year of publication

Działania nieskończone

CZĘŚĆ PIERWSZA: Liczby rzeczywiste i zespolone.ROZDZIAŁ I. Przekroje i liczby niewymierne§ 1. Przekroje zbioru liczb wymiernych....................... 1§ 2. Luki. Liczby niewymierne; liczby rzeczywiste....................... 2§ 3. Pojęcie liczby mniejszej i większej....................... 3§ 4. Przechodniość znaku <....................... 4§ 5. Gęstość zbioru liczb wymiernych w zbiorze liczb rzeczywistych....................... 7§ 6. Zamykanie liczby rzeczywistej między dwiema dowolnie bliskimi...

Algébre des ensembles

TABLE DES MATIÈRES CHAPITRE I. ALGEBRE DES PROPOSITIONS § 1. L'équivalence des propositions................ 1 § 2. L'implication................ 3 § 3. Produit logique et somme logique................ 7 § 4. Négation................ 11 § 5. Fonctions propositionnelles................ 24 § 6. Les quantificateurs................ 30 CHAPITRE II. ENSEMBLES, ÉLEMENTS, SOUS-ENSEMBLES § 7. Ensembles et leurs éléments................ 35 § 8, Egalité et inégalité des ensembles................ 37 § 9. Ensemble...

Rachunek nieskończony

CZĘŚĆ TRZECIA: Funkcje elementarne ROZDZIAŁ XVI. Funkcja wykładnicza zmiennej zespolonej. Funkcje trygonometryczne oraz ich odwrócenie § 133. Rozwinięcie funkcji e z na szereg potęgowy................ 1 § 134. Obliczanie liczby e; jej niewymierność................ 3 § 136. Funkcja e z dla zespolonych z................ 6 § 136. Funkcje cos z oraz sin z i ich własności................ 8 § 137. Liczba π. Okresowość funkcyj trygonometrycznych................ 11 § 138. Bieg funkcyj cos x i sin x dla rzeczywistych...

Zasady algebry wyższej

SPIS RZECZY PRZEDMOWA........................................ V ROZDZIAŁ I. PERMUTACJE § 1. Permutacje elementów......................... 1 § 2. Nieporządek elementu i permutacji. Podział permutacji na dwie klasy......... 2 § 3. Transpozycje. Ich wpływ na klasę permutacji. Liczba permutacyj każdej klasy...... 3 § 4. Otrzymywanie dowolnej permutacji za pomocą kolejnych transpozycyj..... 5 ROZDZIAŁ II. WYZNACZNIKI § 1. Wstęp historyczny............................. 7 § 2. Definicja wyznacznika.........................

Hypothèse du continu

PRÉFACE................. III INTRODUCTION. L'hypothese du continu et le probleme du continu................... 1 NOTATIONS........................... 8 CHAPITRE I. Propositions équivalentes a l'hypothese du continu............... 9 CHAPITRE II. L'ensemble de M. Lusin § 1. Proposition C1....................... 36 § 2. Propriétés L et C....................................... 37 § 3. Fonctions définies sur les ensembles a propriété L.................. 38 § 4. Propriété M................... 48 § 5....

Teoria liczb

SPIS RZECZY PRZEDMOWA............. III ERRATA.................... VI ROZDZIAŁ I. PODZIELNOŚĆ LICZB I ROZKŁAD NA CZYNNIKI PIERWSZE § 1. Podzielność jednej liczby przez drugą........................... 1 § 2. Wspólne dzielniki dwu liczb....................... 2 § 3. Największy wspólny dzielnik...................... 2 § 4. Najmniejsza wspólna wielokrotność................ 3 § 5. Własność największego wspólnego dzielnika.......... 4 § 6. Zależność między największym wspólnym dzielnikiem a najmniejszą...

Page 1 Next

Download Results (CSV)