The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper studies a new class of nonlocal boundary value problems of nonlinear differential equations and inclusions of fractional order with fractional integral boundary conditions. Some new existence results are obtained by using standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also discussed.
In this paper, we study the global existence of solutions for first and second order initial value problems for functional semilinear integrodifferential equations in Banach space, by using the Leray-Schauder Alternative or the Nonlinear Alternative for contractive maps.
This paper studies the existence of solutions for fractional hybrid differential inclusions of Hadamard type by using a fixed point theorem due to Dhage. The main result is illustrated with the aid of an example.
In this paper, we investigate the existence of solutions on unbounded domain to a hyperbolic differential inclusion in Banach spaces. We shall rely on a fixed point theorem due to Ma which is an extension to multivalued between locally convex topological spaces of Schaefer's theorem.
This article studies a boundary value problem of nonlinear fractional differential inclusions with anti-periodic type integral boundary conditions. Some existence results are obtained via fixed point theorems. The cases of convex-valued and nonconvex-valued right hand sides are considered. Several new results appear as a special case of the results of this paper.
In this paper, we discuss the existence of solutions for a four-point integral boundary value problem of second order differential inclusions involving convex and non-convex multivalued maps. The existence results are obtained by applying the nonlinear alternative of Leray Schauder type and some suitable theorems of fixed point theory.
In this paper, we investigate oscillation results for the solutions of impulsive conformable fractional differential equations of the form tkDαpttkDαxt+rtxt+qtxt=0,t≥t0,t≠tk,xtk+=akx(tk−),tkDαxtk+=bktk−1Dαx(tk−),k=1,2,….
Some new oscillation results are obtained by using the equivalence transformation and the associated Riccati techniques.
In this paper we investigate the existence of mild solutions defined on a semiinfinite interval for initial value problems for a differential equation with a nonlocal condition. The results is based on the Schauder-Tychonoff fixed point theorem and rely on a priori bounds on solutions.
In this paper we investigate the existence of mild solutions to second order initial value problems for a class of delay integrodifferential inclusions with nonlocal conditions. We rely on a fixed point theorem for condensing maps due to Martelli.
In this paper, we shall establish sufficient conditions for the controllability on semi-infinite intervals for first and second order functional differential inclusions in Banach spaces. We shall rely on a fixed point theorem due to Ma, which is an extension on locally convex topological spaces, of Schaefer's theorem. Moreover, by using the fixed point index arguments the implicit case is treated.
In this paper, we study a new class of three-point boundary value problems of nonlinear second-order q-difference inclusions. Our problems contain different numbers of q in derivatives and integrals. By using fixed point theorems, some new existence results are obtained in the cases when the right-hand side has convex as well as noncovex values.
In this paper we study an existence result for initial value problems for hybrid fractional integro-differential inclusions. A hybrid fixed point theorem for a sum of three operators due to Dhage is used. An example illustrating the obtained result is also presented.
In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.
In this paper, we investigate the existence of positive solutions for Hadamard type fractional differential system with coupled nonlocal fractional integral boundary conditions on an infinite domain. Our analysis relies on Guo-Krasnoselskii’s and Leggett-Williams fixed point theorems. The obtained results are well illustrated with the aid of examples.
In this paper a fixed point theorem for contraction multivalued maps due to Covitz and Nadler is used to investigate the existence of solutions for first and second order nonresonance impulsive functional differential inclusions in Banach spaces.
Download Results (CSV)