First type almost geodesic mappings of general affine connection spaces.
We study -almost geodesic mappings of the second type , between non-symmetric affine connection spaces. These mappings are a generalization of the second type almost geodesic mappings defined by N. S. Sinyukov (1979). We investigate a special type of these mappings in this paper. We also consider -structures that generate mappings of type , . For a mapping , , we determine the basic equations which generate them.
In this paper we investigate holomorphically projective mappings of generalized Kählerian spaces. In the case of equitorsion holomorphically projective mappings of generalized Kählerian spaces we obtain five invariant geometric objects for these mappings.
In this paper we define generalized Kählerian spaces of the first kind given by (2.1)–(2.3). For them we consider hollomorphically projective mappings with invariant complex structure. Also, we consider equitorsion geodesic mapping between these two spaces ( and ) and for them we find invariant geometric objects.
Page 1