Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

Semigroup commutators under differences (II).

Nicholas Th. Varopoulos — 1993

Revista Matemática Iberoamericana

This is the second instalment of my previous paper with the same title, [1]. This paper consists of two different parts. The first part is devoted to improvements of the results developed in [1]. These improvements are described in section 0.1 below and developed in sections 1 to 5, and 9 to 10; they are in fact technically distinct from [1] and rely on a systematic use of microlocalisation in the context of Hörmander-Weyl calculus. These paragraphs can therefore be read quite independently from...

Some remarks on Q -algebras

Nicolas Th. Varopoulos — 1972

Annales de l'institut Fourier

We study Banach algebras that are quotients of uniform algebras and we show in particular that the class is stable by interpolation. We also show that p , ( 1 p ) are Q algebras and that A n = L 1 ( Z ; 1 + | n | α ) is a Q -algebra if and only if α > 1 / 2 .

Brownian motion and transient groups

Nicolas Th. Varopoulos — 1983

Annales de l'institut Fourier

In this paper I consider M ˜ M a covering of a Riemannian manifold M . I prove that Green’s function exists on M ˜ if any and only if the symmetric translation invariant random walks on the covering group G are transient (under the assumption that M is compact).

Page 1

Download Results (CSV)