Nous construisons pour toute correspondance polynomiale d’exposant de Lojasiewicz une mesure d’équilibre . Nous montrons que est approximable par les préimages d’un point générique et que les points périodiques répulsifs sont équidistribués sur le support de . En utilisant ces résultats, nous donnons une caractérisation des ensembles d’unicité pour les polynômes.
Nous démontrons qu’une sous-variété réelle de dimension et maximalement complexe d’un ouvert -linéairement concave de est le bord d’un sous-ensemble analytique de dimension de si et seulement s’il existe un sous-ensemble -générique de tel que pour tout l’intersection soit le bord d’une surface de Riemann (pour , est -générique si et seulement s’il n’est pas inclus dans une réunion dénombrable d’hyperplans de ). Ce théorème généralise le théorème de Wermer-Harvey-Lawson...
Dans cet article, nous déterminons tous les couples d’endomorphismes polynomiaux
permutables de degrés supérieurs à 1 de qui se prolongent en des
endomorphismes holomorphes de et qui possèdent deux suites d’itérés
disjointes.
Let be a non-invertible holomorphic endomorphism of a projective space and its iterate of order . We prove that the pull-back by of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to when tends to infinity. We also give an analogous result for the pull-back of positive closed -currents and a similar result for regular polynomial automorphisms of .
We introduce a geometry on the cone of positive closed currents of bidegree and apply it to define the intersection of such currents. We also construct and study the Green currents and the equilibrium measure for horizontal-like mappings. The Green currents satisfy some extremality properties. The equilibrium measure is invariant, mixing and has maximal entropy. It is equal to the intersection of the Green currents associated to the horizontal-like map and to its inverse.
Download Results (CSV)