The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 22

Showing per page

Order by Relevance | Title | Year of publication

Towards a theory of some unbounded linear operators on p -adic Hilbert spaces and applications

Toka Diagana — 2005

Annales mathématiques Blaise Pascal

We are concerned with some unbounded linear operators on the so-called p -adic Hilbert space 𝔼 ω . Both the Closedness and the self-adjointness of those unbounded linear operators are investigated. As applications, we shall consider the diagonal operator on 𝔼 ω , and the solvability of the equation A u = v where A is a linear operator on 𝔼 ω .

Representation of bilinear forms in non-Archimedean Hilbert space by linear operators

Toka Diagana — 2006

Commentationes Mathematicae Universitatis Carolinae

The paper considers representing symmetric, non-degenerate, bilinear forms on some non-Archimedean Hilbert spaces by linear operators. Namely, upon making some assumptions it will be shown that if φ is a symmetric, non-degenerate bilinear form on a non-Archimedean Hilbert space, then φ is representable by a unique self-adjoint (possibly unbounded) operator A .

Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces

Dodzi AttimuToka Diagana — 2009

Commentationes Mathematicae Universitatis Carolinae

This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on c 0 . For that, our first task consists of introducing a new class of linear operators denoted W ( c 0 ( J , ω , 𝕂 ) ) and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.

Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II

Dodzi AttimuToka Diagana — 2007

Commentationes Mathematicae Universitatis Carolinae

The paper considers the representation of non-degenerate bilinear forms on the non-Archimedean Hilbert space 𝔼 ω × 𝔼 ω by linear operators. More precisely, upon making some suitable assumptions we prove that if ϕ is a non-degenerate bilinear form on 𝔼 ω × 𝔼 ω , then ϕ is representable by a unique linear operator A whose adjoint operator A * exists.

Page 1 Next

Download Results (CSV)