The weight of a path in a graph is defined to be the sum of degrees of its vertices in entire graph. It is proved that each plane triangulation of minimum degree 5 contains a path P₅ on 5 vertices of weight at most 29, the bound being precise, and each plane triangulation of minimum degree 4 contains a path P₄ on 4 vertices of weight at most 31.
A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is known that a plane graph of minimum face size 5 contains light paths and a light pentagon. In this paper we show that every plane graph of minimum face size 5 contains also a light star and we present a structural result concerning the existence of a pair of adjacent faces with degree-bounded vertices.
A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is well known that a plane graph of minimum degree five contains light edges and light triangles. In this paper we show that every plane graph of minimum degree five contains also light stars and and a light 4-path P₄. The results obtained for and P₄ are best possible.
A vertex is said to be doubly light in a family of plane graphs if its degree and sizes of neighbouring faces are bounded above by a finite constant. We provide several results on the existence of doubly light vertices in various families of plane graph.
We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by . This improves a recent bound , D ≥ 8 by Jendrol’ and Skupień, and the upper bound for distance-2 chromatic number.
A graph is 1-planar if it can be embedded in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree 5 and girth 4 contains
(1) a 5-vertex adjacent to an ≤ 6-vertex,
(2) a 4-cycle whose every vertex has degree at most 9,
(3) a with all vertices having degree at most 11.
A graph is called 1-planar if there exists a drawing in the plane so that each edge contains at most one crossing. We study maximal 1-planar graphs from the point of view of properties of their diagrams, local structure and hamiltonicity.
We study graphs whose vertices possess the same value of betweenness centrality (which is defined as the sum of relative numbers of shortest paths passing through a given vertex). Extending previously known results of S. Gago, J. Hurajová, T. Madaras (2013), we show that, apart of cycles, such graphs cannot contain 2-valent vertices and, moreover, are 3-connected if their diameter is 2. In addition, we prove that the betweenness uniformity is satisfied in a wide graph family of semi-symmetric graphs,...
A graph H is defined to be light in a graph family 𝒢 if there exist finite numbers φ(H, 𝒢) and w(H, 𝒢) such that each G ∈ 𝒢 which contains H as a subgraph, also contains its isomorphic copy K with ΔG(K) ≤ φ(H, 𝒢) and ∑x∈V(K) degG(x) ≤ w(H, 𝒢). In this paper, we investigate light graphs in families of plane graphs of minimum degree 2 with prescribed girth and no adjacent 2-vertices, specifying several necessary conditions for their lightness and providing sharp bounds on φ and w for light K1,3...
The betweenness centrality of a vertex of a graph is the fraction of shortest paths between all pairs of vertices passing through that vertex. In this paper, we study properties and constructions of graphs whose vertices have the same value of betweenness centrality (betweenness-uniform graphs); we show that this property holds for distance-regular graphs (which include strongly regular graphs) and various graphs obtained by graph cloning and local join operation. In addition, we show that, for...
We study improper interval edge colourings, defined by the requirement that the edge colours around each vertex form an integer interval. For the corresponding chromatic invariant (being the maximum number of colours in such a colouring), we present upper and lower bounds and discuss their qualities; also, we determine its values and estimates for graphs of various families, like wheels, prisms or complete graphs. The study of this parameter was inspired by the interval colouring, introduced by...
Download Results (CSV)