Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

List coloring of complete multipartite graphs

Tomáš Vetrík — 2012

Discussiones Mathematicae Graph Theory

The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r-1 partite classes of order two.

Edge-colouring of graphs and hereditary graph properties

Samantha DorflingTomáš Vetrík — 2016

Czechoslovak Mathematical Journal

Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph G , a hereditary graph property 𝒫 and l 1 we define χ 𝒫 , l ' ( G ) to be the minimum number of colours needed to properly colour the edges of G , such that any subgraph of G induced by edges coloured by (at most) l colours is in 𝒫 . We present a necessary and sufficient condition for the existence of χ 𝒫 , l ' ( G ) . We focus on edge-colourings of graphs with respect to the hereditary properties...

The Degree-Diameter Problem for Outerplanar Graphs

Peter DankelmannElizabeth JonckTomáš Vetrík — 2017

Discussiones Mathematicae Graph Theory

For positive integers Δ and D we define nΔ,D to be the largest number of vertices in an outerplanar graph of given maximum degree Δ and diameter D. We prove that [...] nΔ,D=ΔD2+O (ΔD2−1) n Δ , D = Δ D 2 + O Δ D 2 - 1 is even, and [...] nΔ,D=3ΔD−12+O (ΔD−12−1) n Δ , D = 3 Δ D - 1 2 + O Δ D - 1 2 - 1 if D is odd. We then extend our result to maximal outerplanar graphs by showing that the maximum number of vertices in a maximal outerplanar graph of maximum degree Δ and diameter D asymptotically equals nΔ,D.

A note on the size Ramsey numbers for matchings versus cycles

Edy Tri BaskoroTomáš Vetrík — 2021

Mathematica Bohemica

For graphs G , F 1 , F 2 , we write G ( F 1 , F 2 ) if for every red-blue colouring of the edge set of G we have a red copy of F 1 or a blue copy of F 2 in G . The size Ramsey number r ^ ( F 1 , F 2 ) is the minimum number of edges of a graph G such that G ( F 1 , F 2 ) . Erdős and Faudree proved that for the cycle C n of length n and for t 2 matchings t K 2 , the size Ramsey number r ^ ( t K 2 , C n ) < n + ( 4 t + 3 ) n . We improve their upper bound for t = 2 and t = 3 by showing that r ^ ( 2 K 2 , C n ) n + 2 3 n + 9 for n 12 and r ^ ( 3 K 2 , C n ) < n + 6 n + 9 for n 25 .

Resolving sets of directed Cayley graphs for the direct product of cyclic groups

Demelash Ashagrie MengeshaTomáš Vetrík — 2019

Czechoslovak Mathematical Journal

A directed Cayley graph C ( Γ , X ) is specified by a group Γ and an identity-free generating set X for this group. Vertices of C ( Γ , X ) are elements of Γ and there is a directed edge from the vertex u to the vertex v in C ( Γ , X ) if and only if there is a generator x X such that u x = v . We study graphs C ( Γ , X ) for the direct product Z m × Z n of two cyclic groups Z m and Z n , and the generating set X = { ( 0 , 1 ) , ( 1 , 0 ) , ( 2 , 0 ) , , ( p , 0 ) } . We present resolving sets which yield upper bounds on the metric dimension of these graphs for p = 2 and 3 .

On Ramsey ( K 1 , 2 , C ) -minimal graphs

Tomás VetríkLyra YuliantiEdy Tri Baskoro — 2010

Discussiones Mathematicae Graph Theory

For graphs F, G and H, we write F → (G,H) to mean that any red-blue coloring of the edges of F contains a red copy of G or a blue copy of H. The graph F is Ramsey (G,H)-minimal if F → (G,H) but F* ↛ (G,H) for any proper subgraph F* ⊂ F. We present an infinite family of Ramsey ( K 1 , 2 , C ) -minimal graphs of any diameter ≥ 4.

The Gutman Index and the Edge-Wiener Index of Graphs with Given Vertex-Connectivity

Jaya Percival MazorodzeSimon MukwembiTomáš Vetrík — 2016

Discussiones Mathematicae Graph Theory

The Gutman index and the edge-Wiener index have been extensively investigated particularly in the last decade. An important stream of re- search on graph indices is to bound indices in terms of the order and other parameters of given graph. In this paper we present asymptotically sharp upper bounds on the Gutman index and the edge-Wiener index for graphs of given order and vertex-connectivity κ, where κ is a constant. Our results substantially generalize and extend known results in the area.

Page 1

Download Results (CSV)