Let X, Y, Z, W be manifolds and π : Z → X be a surjective submersion. We characterize π-local regular operators A : C∞(X,Y) → C∞(Z,W) in terms of the corresponding maps à : J∞(X,Y) ×XZ → W satisfying the so-called local finite order factorization property.
For natural numbers r,s,q,m,n with s≥r≤q we determine all natural functions g: T *(J (r,s,q)(Y, R 1,1)0)*→R for any fibered manifold Y with m-dimensional base and n-dimensional fibers. For natural numbers r,s,m,n with s≥r we determine all natural functions g: T *(J (r,s)(Y, R)0)*→R for any Y as above.
All natural operators T ↝ T(T ⊗ T*) lifting vector fields X from n-dimensional manifolds M to vector fields B(X) on the bundle of affinors ™ ⊗ T*M are described.
Let P be a principal fiber bundle with the basis M and with the structural group G. A trivialization of P is a section of P. It is proved that there exists only one gauge natural operator transforming trivializations of P into principal connections in P. All gauge natural operators transforming trivializations of P and torsion free classical linear connections on M into classical linear connections on P are completely described.
We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.
If is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism given by between the tangent and the cotangent bundles of . In the present note, we generalize this isomorphism to the one between the -th order vector tangent and the -th order cotangent bundles of . Next, we describe all base preserving vector bundle maps depending on a Riemannian metric in terms of natural (in ) tensor fields on .
We study how a projectable general connection in a 2-fibred manifold and a general vertical connection in induce a general connection in .
If (or ), all natural bilinear operators transforming pairs of couples of vector fields and -forms on -manifolds into couples of vector fields and -forms on are described. It is observed that any natural skew-symmetric bilinear operator as above coincides with the generalized Courant bracket up to three (two, respectively) real constants.
This paper is a contribution to the axiomatic approach to geometric objects. A collection of a manifold M, a topological space N, a group homomorphism E: Diff(M) → Homeo(N) and a function π: N → M is called a quasi-natural bundle if (1) π ∘ E(f) = f ∘ π for every f ∈ Diff(M) and (2) if f,g ∈ Diff(M) are two diffeomorphisms such that f|U = g|U for some open subset U of M, then E(f)|π^{-1}(U) = E(g)|π^{-1}(U). We give conditions which ensure that π: N → M is continuous. In particular, if (M,N,E,π)...
A complete description is given of all product preserving gauge bundle functors F on vector bundles in terms of pairs (A,V) consisting of a Weil algebra A and an A-module V with . Some applications of this result are presented.
Let be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on is given.
We study the problem of how a map f:M → ℝ on an n-manifold M induces canonically an affinor on the vector r-tangent bundle over M. This problem is reflected in the concept of natural operators . For integers r ≥ 1 and n ≥ 2 we prove that the space of all such operators is a free (r+1)²-dimensional module over and we construct explicitly a basis of this module.
Let A be a Weil algebra and V be an A-module with dim V < ∞. Let E → M be a vector bundle and let TE → TM be the vector bundle corresponding to (A,V). We construct canonically a linear semibasic tangent valued p-form Tφ : T E → ΛT*TM ⊗ TTE on TE → TM from a linear semibasic tangent valued p-form φ : E → ΛT*M ⊗ TE on E → M. For the Frolicher-Nijenhuis bracket we prove that [[Tφ, Tψ]] = T ([[φ,ψ]]) for any linear semibasic tangent valued p- and q-forms φ and ψ on E → M. We apply these results...
Using a general connection Γ on a fibred manifold p:Y → M and a torsion free classical linear connection ∇ on M, we distinguish some “special” fibred coordinate systems on Y, and then we construct a general connection on Fp:FY → FM for any vector bundle functor F: ℳ f → of finite order.
Let 𝓟𝓑 be the category of principal bundles and principal bundle homomorphisms. We describe completely the product preserving gauge bundle functors (ppgb-functors) on 𝓟𝓑 and their natural transformations in terms of the so-called admissible triples and their morphisms. Then we deduce that any ppgb-functor on 𝓟𝓑 admits a prolongation of principal connections to general ones. We also prove a "reduction" theorem for prolongations of principal connections into principal ones by means of Weil functors....
A classification of all -natural operators lifting p-dimensional distributions D ⊂ TM on m-manifolds M to q-dimensional distributions A(D) ⊂ TT*M on the cotangent bundle T*M is given.
We present a complete description of all product preserving bundle functors on the category ℱol of all foliated manifolds and their leaf respecting maps in terms of homomorphisms of Weil algebras.
We present a complete description of all fiber product preserving gauge bundle functors F on the category of vector bundles with m-dimensional bases and vector bundle maps with local diffeomorphisms as base maps. Some corollaries of this result are presented.
All natural operators A transforming a linear vector field X on a vector bundle E into a vector field A(X) on the r-jet prolongation of E are given. Similar results are deduced for the r-jet prolongations and in place of .
Let Y → M be a fibred manifold with m-dimensional base and n-dimensional fibres. Let r, m,n be positive integers. We present a construction of rth order holonomic connections on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M. Then we prove that any construction B of rth order holonomic connections on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M is equal to . Applying...
Download Results (CSV)