The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 83

Showing per page

Order by Relevance | Title | Year of publication

On regular local operators on smooth maps

Włodzimierz Mikulski — 2015

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

Let X, Y, Z, W be manifolds and π : Z → X be a surjective submersion. We characterize π-local regular operators A : C∞(X,Y) → C∞(Z,W) in terms of the corresponding maps à : J∞(X,Y) ×XZ → W satisfying the so-called local finite order factorization property.

Connections from trivializations

Jan KurekWłodzimierz Mikulski — 2016

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

Let P be a principal fiber bundle with the basis M and with the structural group G. A trivialization of P is a section of P. It is proved that there exists only one gauge natural operator transforming trivializations of P into principal connections in P. All gauge natural operators transforming trivializations of P and torsion free classical linear connections on M into classical linear connections on P are completely described.

The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

Jan KurekWłodzimierz Mikulski — 2014

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

If ( M , g ) is a Riemannian manifold, we have the well-known base preserving   vector bundle isomorphism T M = ˜ T * M given by v g ( v , - ) between the tangent T M and the cotangent T * M bundles of M . In the present note, we generalize this isomorphism to the one T ( r ) M = ˜ T r * M between the r -th order vector tangent T ( r ) M = ( J r ( M , R ) 0 ) * and the r -th order cotangent T r * M = J r ( M , R ) 0 bundles of M . Next, we describe all base preserving  vector bundle maps C M ( g ) : T ( r ) M T r * M depending on a Riemannian metric g in terms of natural (in g ) tensor fields on M .

On canonical constructions on connections

Jan KurekWłodzimierz Mikulski — 2016

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

We study  how a projectable general connection Γ in a 2-fibred manifold Y 2 Y 1 Y 0   and a general vertical connection Θ in Y 2 Y 1 Y 0 induce a general connection A ( Γ , Θ ) in Y 2 Y 1 .

On the Courant bracket on couples of vector fields and p -forms

Miroslav DoupovecJan KurekWłodzimierz Mikulski — 2018

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

If m p + 1 2 (or m = p 3 ), all  natural bilinear  operators A transforming pairs of couples of vector fields and p -forms on m -manifolds M into couples of vector fields and p -forms on M are described. It is observed that  any natural skew-symmetric bilinear operator A as above coincides with the generalized Courant bracket up to three (two, respectively) real constants.

Continuity of projections of natural bundles

Włodzimierz M. Mikulski — 1992

Annales Polonici Mathematici

This paper is a contribution to the axiomatic approach to geometric objects. A collection of a manifold M, a topological space N, a group homomorphism E: Diff(M) → Homeo(N) and a function π: N → M is called a quasi-natural bundle if (1) π ∘ E(f) = f ∘ π for every f ∈ Diff(M) and (2) if f,g ∈ Diff(M) are two diffeomorphisms such that f|U = g|U for some open subset U of M, then E(f)|π^{-1}(U) = E(g)|π^{-1}(U). We give conditions which ensure that π: N → M is continuous. In particular, if (M,N,E,π)...

Liftings of 1-forms to ( J r T * ) *

Włodzimierz M. Mikulski — 2002

Colloquium Mathematicae

Let J r T * M be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let ( J r T * M ) * be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on ( J r T * M ) * is given.

The natural operators T ( 0 , 0 ) T ( 1 , 1 ) T ( r )

Włodzimierz M. Mikulski — 2003

Colloquium Mathematicae

We study the problem of how a map f:M → ℝ on an n-manifold M induces canonically an affinor A ( f ) : T T ( r ) M T T ( r ) M on the vector r-tangent bundle T ( r ) M = ( J r ( M , ) ) * over M. This problem is reflected in the concept of natural operators A : T | f ( 0 , 0 ) T ( 1 , 1 ) T ( r ) . For integers r ≥ 1 and n ≥ 2 we prove that the space of all such operators is a free (r+1)²-dimensional module over ( T ( r ) ) and we construct explicitly a basis of this module.

Prolongation of linear semibasic tangent valued forms to product preserving gauge bundles of vector bundles.

Wlodzimierz M. Mikulski — 2006

Extracta Mathematicae

Let A be a Weil algebra and V be an A-module with dim V < ∞. Let E → M be a vector bundle and let TE → TM be the vector bundle corresponding to (A,V). We construct canonically a linear semibasic tangent valued p-form Tφ : T E → ΛT*TM ⊗ TTE on TE → TM from a linear semibasic tangent valued p-form φ : E → ΛT*M ⊗­ TE on E → M. For the Frolicher-Nijenhuis bracket we prove that [[Tφ, Tψ]] = T ([[φ,ψ]]) for any linear semibasic tangent valued p- and q-forms φ and ψ on E → M. We apply these results...

Product preserving gauge bundle functors on all principal bundle homomorphisms

Włodzimierz M. Mikulski — 2011

Annales Polonici Mathematici

Let 𝓟𝓑 be the category of principal bundles and principal bundle homomorphisms. We describe completely the product preserving gauge bundle functors (ppgb-functors) on 𝓟𝓑 and their natural transformations in terms of the so-called admissible triples and their morphisms. Then we deduce that any ppgb-functor on 𝓟𝓑 admits a prolongation of principal connections to general ones. We also prove a "reduction" theorem for prolongations of principal connections into principal ones by means of Weil functors....

On prolongation of connections

Włodzimierz M. Mikulski — 2010

Annales Polonici Mathematici

Let Y → M be a fibred manifold with m-dimensional base and n-dimensional fibres. Let r, m,n be positive integers. We present a construction B r of rth order holonomic connections B r ( Γ , ) : Y J r Y on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M. Then we prove that any construction B of rth order holonomic connections B ( Γ , ) : Y J r Y on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M is equal to B r . Applying...

Page 1 Next

Download Results (CSV)