The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Ordinary reduction of K3 surfaces

Fedor BogomolovYuri Zarhin — 2009

Open Mathematics

Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.

Non-supersingular hyperelliptic jacobians

Yuri G. Zarhin — 2004

Bulletin de la Société Mathématique de France

Let K be a field of odd characteristic p , let f ( x ) be an irreducible separable polynomial of degree n 5 with big Galois group (the symmetric group or the alternating group). Let C be the hyperelliptic curve y 2 = f ( x ) and J ( C ) its jacobian. We prove that J ( C ) does not have nontrivial endomorphisms over an algebraic closure of K if either n 7 or p 3 .

Semistable reduction and torsion subgroups of abelian varieties

Alice SilverbergYuri G. Zarhin — 1995

Annales de l'institut Fourier

The main result of this paper implies that if an abelian variety over a field F has a maximal isotropic subgroup of n -torsion points all of which are defined over F , and n 5 , then the abelian variety has semistable reduction away from n . This result can be viewed as an extension of Raynaud’s theorem that if an abelian variety and all its n -torsion points are defined over a field F and n 3 , then the abelian variety has semistable reduction away from n . We also give information about the Néron models...

Page 1

Download Results (CSV)