Displaying similar documents to “Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II”

Boundedness from H 1 to L 1 of Riesz transforms on a Lie group of exponential growth

Peter Sjögren, Maria Vallarino (2008)

Annales de l’institut Fourier

Similarity:

Let G be the Lie group 2 + endowed with the Riemannian symmetric space structure. Let X 0 , X 1 , X 2 be a distinguished basis of left-invariant vector fields of the Lie algebra of G and define the Laplacian Δ = - ( X 0 2 + X 1 2 + X 2 2 ) . In this paper we consider the first order Riesz transforms R i = X i Δ - 1 / 2 and S i = Δ - 1 / 2 X i , for i = 0 , 1 , 2 . We prove that the operators R i , but not the S i , are bounded from the Hardy space H 1 to L 1 . We also show that the second-order Riesz transforms T i j = X i Δ - 1 X j are bounded from H 1 to L 1 , while the transforms S i j = Δ - 1 X i X j and R i j = X i X j Δ - 1 , for i , j = 0 , 1 , 2 , are not. ...

Equidistribution of Small Points, Rational Dynamics, and Potential Theory

Matthew H. Baker, Robert Rumely (2006)

Annales de l’institut Fourier

Similarity:

Given a rational function ϕ ( T ) on 1 of degree at least 2 with coefficients in a number field k , we show that for each place v of k , there is a unique probability measure μ ϕ , v on the Berkovich space Berk , v 1 / v such that if { z n } is a sequence of points in 1 ( k ¯ ) whose ϕ -canonical heights tend to zero, then the z n ’s and their Gal ( k ¯ / k ) -conjugates are equidistributed with respect to μ ϕ , v . The proof uses a polynomial lift F ( x , y ) = ( F 1 ( x , y ) , F 2 ( x , y ) ) of ϕ to construct a two-variable Arakelov-Green’s function g ϕ , v ( x , y ) for each v . The measure μ ϕ , v is...

A.e. convergence of spectral sums on Lie groups

Christopher Meaney, Detlef Müller, Elena Prestini (2007)

Annales de l’institut Fourier

Similarity:

Let be a right-invariant sub-Laplacian on a connected Lie group G , and let S R f : = 0 R d E λ f , R 0 , denote the associated “spherical partial sums,” where = 0 λ d E λ is the spectral resolution of . We prove that S R f ( x ) converges a.e. to f ( x ) as R under the assumption log ( 2 + ) f L 2 ( G ) .

Effective local finite generation of multiplier ideal sheaves

Dan Popovici (2010)

Annales de l’institut Fourier

Similarity:

Let ϕ be a psh function on a bounded pseudoconvex open set Ω n , and let ( m ϕ ) be the associated multiplier ideal sheaves, m . Motivated by global geometric issues, we establish an effective version of the coherence property of ( m ϕ ) as m + . Namely, given any B Ω , we estimate the asymptotic growth rate in m of the number of generators of ( m ϕ ) | B over 𝒪 Ω , as well as the growth of the coefficients of sections in Γ ( B , ( m ϕ ) ) with respect to finitely many generators globally defined on Ω . Our approach relies on proving...

On the counting function for the generalized Niven numbers

Ryan Daileda, Jessica Jou, Robert Lemke-Oliver, Elizabeth Rossolimo, Enrique Treviño (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Given an integer base q 2 and a completely q -additive arithmetic function f taking integer values, we deduce an asymptotic expression for the counting function N f ( x ) = # 0 n < x | f ( n ) n under a mild restriction on the values of f . When f = s q , the base q sum of digits function, the integers counted by N f are the so-called base q Niven numbers, and our result provides a generalization of the asymptotic known in that case.