Semiclassical eigenstates in a multidimensional well
T. F. Pankratova (1992-1993)
Séminaire de théorie spectrale et géométrie
Similarity:
T. F. Pankratova (1992-1993)
Séminaire de théorie spectrale et géométrie
Similarity:
Pierre Lochak, Jean-Pierre Marco (2005)
Open Mathematics
Similarity:
For a positive integer n and R>0, we set . Given R>1 and n≥4 we construct a sequence of analytic perturbations (H j) of the completely integrable Hamiltonian on , with unstable orbits for which we can estimate the time of drift in the action space. These functions H j are analytic on a fixed complex neighborhood V of , and setting the time of drift of these orbits is smaller than (C(1/ɛ j)1/2(n-3)) for a fixed constant c>0. Our unstable orbits stay close to a doubly...
C. Leal (1990)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
W. J. Trjitzinsky
Similarity:
Xavier Mora, Joan Solà-Morales (1989)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
de la Llave, R., Wayne, C.E. (2004)
Mathematical Physics Electronic Journal [electronic only]
Similarity:
Geneviève Raugel (1989)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
Jean-Pierre Marco, David Sauzin (2003)
Publications Mathématiques de l'IHÉS
Similarity:
Olof Runborg (2000)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity: