Displaying similar documents to “Error control and adaptivity for a phase relaxation model”

A posteriori error control for the Allen–Cahn problem : circumventing Gronwall’s inequality

Daniel Kessler, Ricardo H. Nochetto, Alfred Schmidt (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Phase-field models, the simplest of which is Allen–Cahn’s problem, are characterized by a small parameter ε that dictates the interface thickness. These models naturally call for mesh adaptation techniques, which rely on a posteriori error control. However, their error analysis usually deals with the underlying non-monotone nonlinearity via a Gronwall argument which leads to an exponential dependence on ε - 2 . Using an energy argument combined with a topological continuation argument and...

A posteriori error estimates for a nonconforming finite element discretization of the heat equation

Serge Nicaise, Nadir Soualem (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equation in d , d = 2 or 3, using backward Euler’s scheme. For this discretization, we derive a residual indicator, which use a spatial residual indicator based on the jumps of normal and tangential derivatives of the nonconforming approximation and a time residual indicator based on the jump of broken gradients at each time step. Lower and upper bounds form the...

A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems

Alexandre Ern, Sébastien Meunier (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We analyze Euler-Galerkin approximations (conforming finite elements in space and implicit Euler in time) to coupled PDE systems in which one dependent variable, say u , is governed by an elliptic equation and the other, say p , by a parabolic-like equation. The underlying application is the poroelasticity system within the quasi-static assumption. Different polynomial orders are used for the u - and p -components to obtain optimally convergent a priori bounds for all the terms in the error...

A posteriori error estimation and adaptivity in the method of lines with mixed finite elements

Jan Brandts (1999)

Applications of Mathematics

Similarity:

We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.