The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Fail-bounded implementations of the numerical model predictive control algorithms”

Nonlinear model predictive control of a boiler unit: A fault tolerant control study

Krzysztof Patan, Józef Korbicz (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper deals with a nonlinear model predictive control designed for a boiler unit. The predictive controller is realized by means of a recurrent neural network which acts as a one-step ahead predictor. Then, based on the neural predictor, the control law is derived solving an optimization problem. Fault tolerant properties of the proposed control system are also investigated. A set of eight faulty scenarios is prepared to verify the quality of the fault tolerant control. Based of...

Actuator fault tolerant control design based on a reconfigurable reference input

Didier Theilliol, Cédric Join, Youmin Zhang (2008)

International Journal of Applied Mathematics and Computer Science

Similarity:

The prospective work reported in this paper explores a new approach to enhance the performance of an active fault tolerant control system. The proposed technique is based on a modified recovery/trajectory control system in which a reconfigurable reference input is considered when performance degradation occurs in the system due to faults in actuator dynamics. An added value of this work is to reduce the energy spent to achieve the desired closed-loop performance. This work is justified...

Novel fault detection criteria based on linear quadratic control performances

Dušan Krokavec, Anna Filasová (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper proposes a new approach to designing a relatively simple algorithmic fault detection system that is potentially applicable in embedded diagnostic structures. The method blends the LQ control principle with checking and evaluating unavoidable degradation in the sequence of discrete-time LQ control performance index values due to faults in actuators, sensors or system dynamics. Design conditions are derived, and direct computational forms of the algorithms are given. A simulation...

Towards robust predictive fault-tolerant control for a battery assembly system

Lothar Seybold, Marcin Witczak, Paweł Majdzik, Ralf Stetter (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper deals with the modeling and fault-tolerant control of a real battery assembly system which is under implementation at the RAFI GmbH company (one of the leading electronic manufacturing service providers in Germany). To model and control the battery assembly system, a unified max-plus algebra and model predictive control framework is introduced. Subsequently, the control strategy is enhanced with fault-tolerance features that increase the overall performance of the production...

Reconfigurability analysis for reliable fault-tolerant control design

Ahmed Khelassi, Didier Theilliol, Philippe Weber (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper the integration of reliability evaluation in reconfigurability analysis of a fault-tolerant control system is considered. The aim of this work is to contribute to reliable fault-tolerant control design. The admissibility of control reconfigurability is analyzed with respect to reliability requirements. This analysis shows the relationship between reliability and control reconfigurability defined generally through Gramian controllability. An admissible solution for reconfigurability...

Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter

Saúl Montes de Oca, Vicenç Puig, Marcin Witczak, Łukasz Dziekan (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, a Fault Tolerant Control (FTC) strategy for Linear Parameter Varying (LPV) systems that can be used in the case of actuator faults is proposed. The idea of this FTC method is to adapt the faulty plant instead of adapting the controller to the faulty plant. This approach can be seen as a kind of virtual actuator. An integrated FTC design procedure for the fault identification and fault-tolerant control schemes using LPV techniques is provided as well. Fault identification...

Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies

Vicenç Puig (2010)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper reviews the use of set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC). Setmembership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval models). These methods aims at checking the consistency between observed and predicted behaviour by using simple sets to approximate the exact set of possible behaviour (in the parameter or the state space). When an inconsistency is detected between the measured...

LPV design of fault-tolerant control for road vehicles

Péter Gáspár, Zoltán Szabó, József Bokor (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

The aim of the paper is to present a supervisory decentralized architecture for the design and development of reconfigurable and fault-tolerant control systems in road vehicles. The performance specifications are guaranteed by local controllers, while the coordination of these components is provided by a supervisor. Since the monitoring components and FDI filters provide the supervisor with information about the various vehicle maneuvers and the different fault operations, it is able...

Active fault tolerant control of nonlinear systems: The cart-pole example

Marcello Bonfè, Paolo Castaldi, Nicola Mimmo, Silvio Simani (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper describes the design of fault diagnosis and active fault tolerant control schemes that can be developed for nonlinear systems. The methodology is based on a fault detection and diagnosis procedure relying on adaptive filters designed via the nonlinear geometric approach, which allows obtaining the disturbance de-coupling property. The controller reconfiguration exploits directly the on-line estimate of the fault signal. The classical model of an inverted pendulum on a cart...