The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Uwaga do mojej pracy: 'O systematycznych rozwinięciach liczb na iloczyny nieskończone'”

Sur les fonctions approximativement discontinues

Stefan Kempisty (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer: Théorème: Pour toute fonction f(x) d'une variable réelle l'ensemble E[L^+(x)<l^-(x)] est au plus denombrable.

Démonstration d'un théorème sur les fonctions additives d'ensemble

Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer: Théorème: Soit une fonction d'ensembles F, additive et définie sur la famille additive d'ensembles T. Tout ensemble E_0 de la famille T se divise en deux ensembles P et N, tels que P ∈ T, N ∈ T et 1. f(E) ≥ 0 pour E ⊂ P, E ∈ T, 2. f(E) ≤ 0 pour E ⊂ N, E ∈ T.

Materiały redakcyjne

(1910)

Prace Matematyczno-Fizyczne

Similarity:

Strona Tytułowa Treść tomu XXI-go - Table des matières du tome XXI str I-II Czasopisma, książki i broszury nadesłane do Redakcyi "Prac matematyczno-fizycznych" str.199-200

Sur une propriété des fonctions de M. Hamel

Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer le théorème suivant suggeré par Monsieur Nikodym: Théorème: Une fonction discontinue d'une variable réelle f(x) satisfaisant à l'équation fonctionnelle f(x+y) = f(x) + f(y), ne peut être majorée par aucune fonction mesurable.

Une remarque sur la condition de Baire

Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

On dit qu'une fonction f(x) satisfait à la condition de Baire relativement à un ensemble parfait P, si elle est continue sur P quand on néglige un ensemble de première catégorie par rapport à P. Dans ce cas il existe toujours une infinité des ensembles E de première catégorie par rapport à P, tels que f(x) est continue sur P-E. Le but de cette note est de démontrer que parmi ces ensembles il existe toujours le plus petit.

ERRATA

(1899-1900)

Prace Matematyczno-Fizyczne

Similarity:

Sur l'équation fonctionnelle f(x) + f(x+y)

Stanisław Kaczmarz (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est l'étude de l'équation fonctionnelle f(x)+f(x+y)= φ(y)f(x+y/2) où φ (x) est regardée comme une fonction donnée, et f(x) comme l'inconnue.

Sur un problème de M. Lebesgue

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer que pour qu'une fonction de deux variables x, y soit de classe α = 0 dans le plan (x,y), il suffit qu'elle soit de classe 0 de Baire sur toute droite x=const. et sur toute courbe (continue) y=f(x). En plus si cette propriété était exacte pour α=2, on aurait l'inégalité 2^{א_0} > א_1.

Sur l'équation fonctionnelle f(x+y)=f(x)+f(y)

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer le théorème suivant: Toute fonction mesurable f(x) qui satisfait pour tous les nombres réels x et y à l'équation fonctionnelle f(x+y)=f(x)+f(y) est de la forme Ax où A est une constante.

Sur l'équation fonctionnelle f(x+y)=f(x)+f(y)

Stefan Banach (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer que toute fonction mesurable f(x) satisfaisant à l'équation fonctionnelle f(x+y)=f(x)+f(y) est continue (donc, d'après Cauchy, de la forme Ax).

Sur les fonctions convexes mesurables

Wacław Sierpiński (1920)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer le théorème suivant: Toute fonction mesurable et convexe dans l'intervalle <a,b> est continue à l'intérieur de cet intervalle.