The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the complemented subspaces of the Schreier spaces”

Uniqueness of unconditional bases of c 0 ( l p ) , 0 < p < 1

C. Leránoz (1992)

Studia Mathematica

Similarity:

We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of c 0 ( l p ) must be equivalent to a permutation of a subset of the canonical unit vector basis of c 0 ( l p ) . In particular, c 0 ( l p ) has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for c 0 ( l ) .

Spreading sequences in JT

Helga Fetter, B. Gamboa de Buen (1997)

Studia Mathematica

Similarity:

We prove that a normalized non-weakly null basic sequence in the James tree space JT admits a subsequence which is equivalent to the summing basis for the James space J. Consequently, every normalized basic sequence admits a spreading subsequence which is either equivalent to the unit vector basis of l 2 or to the summing basis for J.

Subspaces of the Bourgain-Delbaen space

Richard Haydon (2000)

Studia Mathematica

Similarity:

It is shown that every infinite-dimensional closed subspace of the Bourgain-Delbaen space X a , b has a subspace isomorphic to some p .

Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson (1993)

Studia Mathematica

Similarity:

We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.

On some singular integral operatorsclose to the Hilbert transform

T. Godoy, L. Saal, M. Urciuolo (1997)

Colloquium Mathematicae

Similarity:

Let m: ℝ → ℝ be a function of bounded variation. We prove the L p ( ) -boundedness, 1 < p < ∞, of the one-dimensional integral operator defined by T m f ( x ) = p . v . k ( x - y ) m ( x + y ) f ( y ) d y where k ( x ) = j 2 j φ j ( 2 j x ) for a family of functions φ j j satisfying conditions (1.1)-(1.3) given below.

A lifting theorem for locally convex subspaces of L 0

R. Faber (1995)

Studia Mathematica

Similarity:

We prove that for every closed locally convex subspace E of L 0 and for any continuous linear operator T from L 0 to L 0 / E there is a continuous linear operator S from L 0 to L 0 such that T = QS where Q is the quotient map from L 0 to L 0 / E .

On the characterization of Hardy-Besov spaces on the dyadic group and its applications

Jun Tateoka (1994)

Studia Mathematica

Similarity:

C. Watari [12] obtained a simple characterization of Lipschitz classes L i p ( p ) α ( W ) ( 1 p , α > 0 ) on the dyadic group using the L p -modulus of continuity and the best approximation by Walsh polynomials. Onneweer and Weiyi [4] characterized homogeneous Besov spaces B p , q α on locally compact Vilenkin groups, but there are still some gaps to be filled up. Our purpose is to give the characterization of Besov spaces B p , q α by oscillations, atoms and others on the dyadic groups. As applications, we show a strong capacity inequality...

Schauder decompositions and multiplier theorems

P. Clément, B. de Pagter, F. Sukochev, H. Witvliet (2000)

Studia Mathematica

Similarity:

We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for L p -spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.