The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Substitutions commutatives de séries formelles”

Descente et parallélogramme galoisiens

Richard Massy, Sylvie Monier-Derviaux (1999)

Journal de théorie des nombres de Bordeaux

Similarity:

Soit p un nombre premier impair. Soit D / J une p -extension galoisienne de corps ne contenant pas les racines p -ièmes de l’unité : J μ p = 1 . Notons G le groupe de Galois de D / J et Φ ( G ) son sous-groupe de Frattini. Via une notion de descente galoisienne et les parallélogrammes galoisiens qu’elle induit, nous construisons ici toutes les extensions D / J telles que Φ ( G ) soit d’ordre p .

Familles d’extensions de corps de nombres l -rationnels

Florence Soriano (1996)

Journal de théorie des nombres de Bordeaux

Similarity:

Dans cet article, nous déterminons et classifions toutes les extensions cycliques de degré l de corps de nombres Ł -rationnels contenant une racine primitive l -ième de l’unité. (Cette notion est plus générale que celle de l -régularité étudiée dans un travail antérieur).

Une formule de Riemann-Hurwitz pour le groupe de Selmer d'une courbe elliptique

Alexis Michel (1993)

Annales de l'institut Fourier

Similarity:

Soit E une courbe elliptique avec multiplication complexe, définie sur un corps de nombres F . Soit p un nombre premier. En ajoutant certains points de p -torsion de E à F , on construit une p -extension F de F . On associe à F un groupe de Selmer. Pour une p -extension galoisienne de F , Wingberg a montré, sous les conjectures arithmétiques usuelles, un analogue de la formule de Riemann-Hurwitz pour le corang du groupe de Selmer en haut de la tour. Nous donnons une nouvelle preuve...

S -classes infinitésimales d’un corps de nombres algébriques

Jean-François Jaulent (1984)

Annales de l'institut Fourier

Similarity:

Nous introduisons les notions de nombres et d’idéaux infinitésimaux attachés à un corps de nombres algébriques K relativement à un nombre premier donné , et nous interprétons le groupe de Galois 𝒜 ( K ) de la -extension abélienne -ramifiée maximale de K comme quotient du tensorisé Z Z J ( K ) du groupe des idéaux étrangers à par le sous-module engendré par les idéaux principaux-infinitésimaux. Nous en déduisons diverses conséquences sur l’arithmétique des groupes 𝒜 ( K ) , en montrant en particulier qu’ils...

Unités et classes dans les extensions métabéliennes de degré n s sur un corps de nombres algébriques

Jean-François Jaulent (1981)

Annales de l'institut Fourier

Similarity:

Soit N une extension cyclique -primaire d’un corps de nombres K . On suppose que N est métabélienne sur un sous-corps H d’indice n dans K , pour un n étranger à  ; on note G son groupe de Galois de T un relèvement dans G du quotient Gal ( K / H ) . On étudie la structure galoisienne des groupes de -classes de N et on s’intéresse en particulier à leurs ψ -composantes, lorsque ψ parcourt le groupe des caractères -adiques irréductibles de T . Le choix d’un générateur convenable θ dans l’idéal d’augmentation...

Décomposition du Galois-module des entiers d'une extension cyclique de degré premier d'un corps de nombres ou d'un corps local

Françoise Bertrandias (1979)

Annales de l'institut Fourier

Similarity:

Soit A un anneau de Dedekind, de corps des fractions K , et soit L une extension galoisienne de K , dont le groupe de Galois G est cyclique d’ordre premier. On note B la clôture intégrale de A dans L . Il existe une unique décomposition du A [ G ] -module B en somme directe de sous-modules indécomposables. On détermine cette décomposition lorsque K est un corps local ou un corps de nombres. Le résultat dépend d’une part des caractères irréductibles de G sur K , d’autre part des nombres de ramification...