Displaying similar documents to “Sur le théorème du produit”

Sur la convergence faible des systèmes dynamiques échantillonnés

Nadine Guillotin-Plantard (2004)

Annales de l’institut Fourier

Similarity:

Soit T α la rotation sur le cercle d’angle irrationnel α , soit ( S k ) k 0 une marche aléatoire transiente sur . Soit f L 2 ( μ ) et H ] 0 , 1 [ , nous étudions la convergence faible de la suite 1 n H k = 0 [ n t ] - 1 f T α S k , n 1 .

Discrépance de la suite ( { n α } ) , α = ( 1 + 5 ) / 2

Yves Dupain (1979)

Annales de l'institut Fourier

Similarity:

Soit D * ( N ) la discrépance “à l’origine” de la suite n 1 + 5 2 . Nous montrons que lim sup D * ( N ) Log N = 3 20 Log 1 + 5 2 - 1 = 0 . 31 , quantité inférieure à celle correspondant à la suite de van der Corput. Les techniques utilisées sont celles liées au développement en fraction continue.

Fonction ζ de Carlitz et automates

Valérie Berthé (1993)

Journal de théorie des nombres de Bordeaux

Similarity:

Carlitz a défini sur 𝔽 q une fonction ζ et une série formelle I I , analogues respectivement à la fonction ζ de Riemann et au réel π . Yu a montré, en utilisant les modules de Drinfeld, que ζ ( s ) / I I 3 est transcendant pour tout s non divisible par q - 1 . Nous donnons ici une preuve «automatique» de la transcendance de ζ ( s ) / I I 3 pour 1 s q - 2 , en utilisant le théorème de Christol, Kamae, Mendès France et Rauzy.

Sur la méthode de Van der Corput pour les sommes d'exponentielles

Marouan Redouaby (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

Pour majorer la somme d’exponentielle m = M + 1 2 M e ( T F ( m / M ) ) , F : [1,2] est une fonction “presque monomiale”, M est une entier grand et T un réel grand devant M 4 , nous étudions le procédé A k B A D , A et B désignent comme d’habitude les transformations A et B de Van der Corput [2], et où D désigne le double grand crible appliqué dans l’esprit de Fouvry et Iwaniec [1]. Nos résultats complètent le tableau 17.1 de [5] (voir également [4]) et sont résumés dans le corollaire 2 ci-dessous.

Sur les moyennes arithmétiques des suites de fonctions orthogonales

I. S. Gal (1949)

Annales de l'institut Fourier

Similarity:

Soit { φ ν ( x ) } une suite orthonormale dans l’intervalle ( - < a x b < ) . L’auteur démontre, que ν = 1 N 1 - ν - 1 N φ ν ( x ) = 0 N 1 2 ( log N ) 1 2 + ϵ pour tout ϵ > 0 et presque partout dans a x b . La démonstration est basée sur un théorème de MM. Gál et Koksma et on peut généraliser aussi pour le cas - x (théorème auxiliaire). En utilisant ce théorème auxiliaire on obtient tout de suite l’estimation connue pour les fonctions de Lebesgue (théorème 2) [voir Kaczmarcz et Steinhaus, Theorie der Orthogonalreihen, Warszawa, 1935, 577].