Displaying similar documents to “Lemme fondamental et endoscopie, une approche géométrique”

Compactification de l’espace des modules des variétés abéliennes principalement polarisées

Michel Brion (2005-2006)

Séminaire Bourbaki

Similarity:

Les variétés abéliennes principalement polarisées admettent un espace des modules grossier qu’on sait compactifier de plusieurs façons (compactification de Satake, compactifications toroïdales). Cependant, le problème s’est posé de construire une compactification “modulaire”en termes d’objets géométriques qui permettent de décrire les points du bord. On souhaite aussi compactifier l’application de Torelli qui à chaque courbe algébrique, projective et lisse, associe sa jacobienne. L’exposé...

Correspondances de Hecke, action de Galois et la conjecture d’André–Oort

Rutger Noot (2004-2005)

Séminaire Bourbaki

Similarity:

Soient M une variété de Shimura, Z M fermée et irréductible et S Z ( ) un ensemble Zariski dense de points spéciaux. Selon la conjecture d’André–Oort, Z est une sous-variété de type Hodge. Par exemple, si M est un espace de modules de variétés abéliennes, S est un ensemble de points correspondant à des variétés de type CM et Z doit paramétrer des variétés abéliennes munies de certaines classes de Hodge. En utilisant les actions de l’algèbre de Hecke et du groupe de Galois, Edixhoven et Yafaev...

Motifs de dimension finie

Yves André (2003-2004)

Séminaire Bourbaki

Similarity:

On sait que les groupes de Chow d’une variété projective ne sont pas de type fini, et ne peuvent même être paramétrés par une variété algébrique, en général. Pourtant, S.-I. Kimura et P. O’Sullivan ont conjecturé (indépendamment l’un de l’autre) que les motifs de Chow, définis en termes de correspondances algébriques modulo l’équivalence rationnelle, sont de “dimension finie”au sens où, tout comme les super-fibrés vectoriels, ils sont somme d’un facteur dont une puissance extérieure...

Obstructions au principe de Hasse et à l’approximation faible

Emmanuel Peyre (2003-2004)

Séminaire Bourbaki

Similarity:

Si un système d’équations polynomiales à coefficients entiers admet une solution dans 𝐐 n , il en admet sur tout complété p -adique ou réel de 𝐐 . La réciproque a été démontrée par Hasse pour les quadriques, mais elle est fausse en général. Une grande partie des contre-exemples connus peuvent être expliqués à l’aide de l’obstruction de Brauer-Manin, basée sur la théorie du corps de classe. Il est donc naturel de se demander si, pour certaines classes de variétés, cette obstruction est la...

Espaces analytiques p -adiques au sens de Berkovich

Antoine Ducros (2005-2006)

Séminaire Bourbaki

Similarity:

Il y a une quinzaine d’années, Berkovich a proposé une nouvelle approche de la géométrie analytique sur un corps ultramétrique complet. Elle fournit, contrairement aux précédentes, des espaces localement compacts et localement connexes par arcs. Elle s’est révélée particulièrement fructueuse pour l’étude d’une grande variété de questions ; citons par exemple les cycles évanescents ou quelques analogues p -adiques de théories classiques : potentiel, dessins d’enfants, intégration le long...

Catégories dérivées et géométrie birationnelle

Raphaël Rouquier (2004-2005)

Séminaire Bourbaki

Similarity:

À l’origine conçue comme un outil technique, la catégorie dérivée des faisceaux cohérents d’une variété algébrique est apparue lors de ces dix dernières années comme un invariant important dans l’étude birationnelle des variétés algébriques. Des problèmes d’invariance birationnelle et de minimisation de la catégorie dérivée sont apparus, inspirés par la conjecture homologique de symétrie miroir de Kontsevich et le programme de Mori de modèles minimaux pour les variétés algébriques. Nous...

Nouvelles approches de la propriété (T) de Kazhdan

Alain Valette (2002-2003)

Séminaire Bourbaki

Similarity:

Un groupe localement compact G a la propriété (T) de Kazhdan si la 1 -cohomologie de tout G -module hilbertien est nulle. Cette propriété de rigidité de la théorie des représentations de G a trouvé des applications qui vont de la théorie ergodique à la théorie des graphes. Pendant près de 30 ans, les seuls exemples connus de groupes avec la propriété (T), provenaient des groupes algébriques simples sur les corps locaux, ou de leurs réseaux. La situation a radicalement changé ces dernières...

Groupes de Galois de corps de type fini

Tamás Szamuely (2002-2003)

Séminaire Bourbaki

Similarity:

Il y a quelques années, Florian Pop a démontré que tout corps de type fini sur le corps premier est déterminé à isomorphisme près par son groupe de Galois absolu (quitte à passer à une extension purement inséparable en caractéristique positive). Ce théorème, dont la généalogie remonte à des travaux de Neukirch sur les groupes de Galois de corps de nombres au début des années 1970, répond positivement à la “conjecture anabélienne birationnelle”de A. Grothendieck formulée en 1983. Dans...