Erratum to “Geometric rigidity of invariant measures” (J. Eur. Math. Soc. 14, 1539–1563 (2012))
Michael Hochman (2013)
Journal of the European Mathematical Society
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Michael Hochman (2013)
Journal of the European Mathematical Society
Similarity:
Jean-Pierre Conze, Albert Raugi (2009)
Colloquium Mathematicae
Similarity:
Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure . We consider the map defined on X × G by and the cocycle generated by φ. Using a characterization of the ergodic invariant measures for , we give the form of the ergodic decomposition of or more generally of the -invariant measures , where is χ∘φ-conformal for an exponential χ on G.
Jozef Myjak, Tomasz Szarek (2002)
Annales Polonici Mathematici
Similarity:
We give lower and upper estimates of the capacity of self-similar measures generated by iterated function systems where are bi-lipschitzean transformations.
Rui Kuang, Xiangdong Ye (2008)
Colloquium Mathematicae
Similarity:
In topological dynamics a theory of recurrence properties via (Furstenberg) families was established in the recent years. In the current paper we aim to establish a corresponding theory of ergodicity via families in measurable dynamical systems (MDS). For a family ℱ (of subsets of ℤ₊) and a MDS (X,,μ,T), several notions of ergodicity related to ℱ are introduced, and characterized via the weak topology in the induced Hilbert space L²(μ). T is ℱ-convergence ergodic of order k if for any...
Juho Rautio (2015)
Studia Mathematica
Similarity:
We examine multiple disjointness of minimal flows, that is, we find conditions under which the product of a collection of minimal flows is itself minimal. Our main theorem states that, for a collection of minimal flows with a common phase group, assuming each flow satisfies certain structural and algebraic conditions, the product is minimal if and only if is minimal, where is the maximal equicontinuous factor of . Most importantly, this result holds when each is distal. When...
Andrea R. Nahmod, Tadahiro Oh, Luc Rey-Bellet, Gigliola Staffilani (2012)
Journal of the European Mathematical Society
Similarity:
We construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier–Lebesgue space with and scaling like , for small . We also show the invariance of this measure.
Christophe Cuny (2010)
Studia Mathematica
Similarity:
Let X be a closed subspace of , where μ is an arbitrary measure and 1 < p < ∞. Let U be an invertible operator on X such that . Motivated by applications in ergodic theory, we obtain (optimal) conditions for the convergence of series like , 0 ≤ α < 1, in terms of , generalizing results for unitary (or normal) operators in L²(μ). The proofs make use of the spectral integration initiated by Berkson and Gillespie and, more particularly, of results from a paper by Berkson-Bourgain-Gillespie. ...
Gogi Pantsulaia (2009)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
New concepts of Lebesgue measure on are proposed and some of their realizations in the ZFC theory are given. Also, it is shown that Baker’s both measures [1], [2], Mankiewicz and Preiss-Tišer generators [6] and the measure of [4] are not α-standard Lebesgue measures on for α = (1,1,...).
Klaus Schmidt (2002)
Fundamenta Mathematicae
Similarity:
Let T be a measure-preserving and mixing action of a countable abelian group G on a probability space (X,,μ) and A a locally compact second countable abelian group. A cocycle c: G × X → A for T disperses if in measure for every map α: G → A. We prove that such a cocycle c does not disperse if and only if there exists a compact subgroup A₀ ⊂ A such that the composition θ ∘ c: G × X → A/A₀ of c with the quotient map θ: A → A/A₀ is trivial (i.e. cohomologous to a homomorphism η: G → A/A₀). This...
Andrzej Mostowski
Similarity:
CONTENTS Introduction..............................................................................................................................................................3 1. Lemmas concerning first order formulas.....................................................................................................5 2. Representability of recursively enumerable sets........................................................................................9 3. Simple theory of types.......................................................................................................................................10...
Bartosz Frej, Agata Kwaśnicka (2008)
Colloquium Mathematicae
Similarity:
We prove that on a metrizable, compact, zero-dimensional space every -action with no periodic points is measurably isomorphic to a minimal -action with the same, i.e. affinely homeomorphic, simplex of measures.
Piotr Bugiel (1998)
Annales Polonici Mathematici
Similarity:
Asymptotic properties of the sequences (a) and (b) , where is the Frobenius-Perron operator associated with a nonsingular Markov map defined on a σ-finite measure space, are studied for g ∈ G = f ∈ L¹: f ≥ 0 and ⃦f ⃦ = 1. An operator-theoretic analogue of Rényi’s Condition is introduced. It is proved that under some additional assumptions this condition implies the L¹-convergence of the sequences (a) and (b) to a unique g₀ ∈ G. The general result is applied to some smooth Markov...
Wojciech Kosek (2011)
Colloquium Mathematicae
Similarity:
The rate of growth of an operator T satisfying the mean ergodic theorem (MET) cannot be faster than linear. It was recently shown (Kornfeld-Kosek, Colloq. Math. 98 (2003)) that for every γ > 0, there are positive L¹[0,1] operators T satisfying MET with . In the class of positive L¹ operators this is the most one can hope for in the sense that for every such operator T, there exists a γ₀ > 0 such that In this note we construct an example of a nonpositive L¹ operator with the...
Uffe Haagerup, Hanne Schultz (2009)
Publications Mathématiques de l'IHÉS
Similarity:
Let ℳ be a von Neumann factor of type II1 with a normalized trace τ. In 1983 L. G. Brown showed that to every operator T∈ℳ one can in a natural way associate a spectral distribution measure μ T (now called the Brown measure of T), which is a probability measure in ℂ with support in the spectrum σ(T) of T. In this paper it is shown that for every T∈ℳ and every Borel set B in ℂ, there is a unique closed T-invariant subspace affiliated with ℳ, such that the Brown measure of is concentrated...
Krzysztof Zajkowski (2010)
Studia Mathematica
Similarity:
We prove that for the spectral radius of a weighted composition operator , acting in the space , the following variational principle holds: , where X is a Hausdorff compact space, α: X → X is a continuous mapping preserving a Borel measure μ with suppμ = X, is the set of all α-invariant ergodic probability measures on X, and a: X → ℝ is a continuous and -measurable function, where . This considerably extends the range of validity of the above formula, which was previously known...
Bassam Fayad, Jean-Paul Thouvenot (2014)
Acta Arithmetica
Similarity:
We show that for any irrational number α and a sequence of integers such that , there exists a continuous measure μ on the circle such that . This implies that any rigidity sequence of any ergodic transformation is a rigidity sequence for some weakly mixing dynamical system. On the other hand, we show that for any α ∈ ℝ - ℚ, there exists a sequence of integers such that and such that is dense on the circle if and only if θ ∉ ℚα + ℚ.
Stanisaw Szufla (1998)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
We present a new theorem on the differential inequality . Next, we apply this result to obtain existence theorems for the equation .
Roland Zweimüller (2002)
Colloquium Mathematicae
Similarity:
We construct maps T on the interval and on the circle which are Lebesgue exact preserving an absolutely continuous infinite measure μ ≪ λ, such that for any probability measure ν ≪ λ the sequence of arithmetical averages of image measures does not converge weakly.
J. Alaminos, J. Extremera, A. R. Villena (2006)
Studia Mathematica
Similarity:
Let and be representations of a topological group G on Banach spaces X and Y, respectively. We investigate the continuity of the linear operators Φ: X → Y with the property that for each t ∈ G in terms of the invariant vectors in Y and the automatic continuity of the invariant linear functionals on X.
Przemysław Liszka (2013)
Annales Polonici Mathematici
Similarity:
Let for i = 1,..., N be contracting similarities, let be a probability vector and let ν be a probability measure on with compact support. It is well known that there exists a unique inhomogeneous self-similar probability measure μ on such that . We give satisfactory estimates for the lower and upper bounds of the spectra of inhomogeneous self-similar measures. The case in which there are a countable number of contracting similarities and probabilities is considered. In particular,...
I. Assani (2005)
Colloquium Mathematicae
Similarity:
We answer a question of H. Furstenberg on the pointwise convergence of the averages , where U and R are positive operators. We also study the pointwise convergence of the averages when T and S are measure preserving transformations.
G. Pantsulaia (2004)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
An example of a non-zero non-atomic translation-invariant Borel measure on the Banach space is constructed in Solovay’s model. It is established that, for 1 ≤ p < ∞, the condition "-almost every element of has a property P" implies that “almost every” element of (in the sense of [4]) has the property P. It is also shown that the converse is not valid.
Fangyan Lu, Chaoran Peng (2012)
Studia Mathematica
Similarity:
Let X be an infinite-dimensional Banach space, and B(X) the algebra of all bounded linear operators on X. Then ϕ: B(X) → B(X) is a bijective similarity-preserving linear map if and only if one of the following holds: (1) There exist a nonzero complex number c, an invertible bounded operator T in B(X) and a similarity-invariant linear functional h on B(X) with h(I) ≠ -c such that for all A ∈ B(X). (2) There exist a nonzero complex number c, an invertible bounded linear operator T: X*...
Michael Hochman (2012)
Journal of the European Mathematical Society
Similarity:
Let be a probability measure on which is invariant and ergodic for , and . Let be a local diffeomorphism on some open set. We show that if and , then at -a.e. point . In particular, if is a piecewise-analytic map preserving then there is an open -invariant set containing supp such that is piecewise-linear with slopes which are rational powers of . In a similar vein, for as above, if is another integer and are not powers of a common integer, and if is...
Paul Hagelstein, Alexander Stokolos (2012)
Fundamenta Mathematicae
Similarity:
Let be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of and the associated collection of rectangular parallelepipeds in with sides parallel to the axes and dimensions of the form with The associated multiparameter geometric and ergodic maximal operators and are defined respectively on and L¹(Ω) by and . Given a Young function Φ, it is shown that satisfies the weak type estimate ...
Elmouloudi Ed-dari (2004)
Studia Mathematica
Similarity:
For a given linear operator T in a complex Banach space X and α ∈ ℂ with ℜ (α) > 0, we define the nth Cesàro mean of order α of the powers of T by . For α = 1, we find , the usual Cesàro mean. We give necessary and sufficient conditions for a (C,α) bounded operator to be (C,α) strongly (weakly) ergodic.
Mike Todd (2007)
Fundamenta Mathematicae
Similarity:
We obtain estimates for derivative and cross-ratio distortion for (any η > 0) unimodal maps with non-flat critical points. We do not require any “Schwarzian-like” condition. For two intervals J ⊂ T, the cross-ratio is defined as the value B(T,J): = (|T| |J|)/(|L| |R|) where L,R are the left and right connected components of T∖J respectively. For an interval map g such that is a diffeomorphism, we consider the cross-ratio distortion to be B(g,T,J): = B(g(T),g(J))/B(T,J). We prove...
Kathryn E. Hare, Maria Roginskaya (2005)
Colloquium Mathematicae
Similarity:
A measure is called -improving if it acts by convolution as a bounded operator from to for some q > p. Positive measures which are -improving are known to have positive Hausdorff dimension. We extend this result to complex -improving measures and show that even their energy dimension is positive. Measures of positive energy dimension are seen to be the Lipschitz measures and are characterized in terms of their improving behaviour on a subset of -functions.
Balázs Bárány, Tomas Persson (2010)
Fundamenta Mathematicae
Similarity:
We consider iterated function systems on the interval with random perturbation. Let be uniformly distributed in [1-ε,1+ ε] and let be contractions with fixpoints . We consider the iterated function system , where each of the maps is chosen with probability . It is shown that the invariant density is in L² and its L² norm does not grow faster than 1/√ε as ε vanishes. The proof relies on defining a piecewise hyperbolic dynamical system on the cube with an SRB-measure whose projection...
A. L. Bernardis, R. Crescimbeni, C. Ferrari Freire (2015)
Colloquium Mathematicae
Similarity:
Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on , , and with , we define the ergodic Cesàro-α̅ averages . For these averages we prove the almost everywhere convergence on X and the convergence in the norm, when independently, for all with p > 1/α⁎ where . In the limit case p = 1/α⁎, we prove that the averages converge almost everywhere on X for all f in the Orlicz-Lorentz space with . To obtain the result in the limit case we need...
David Färm, Tomas Persson (2013)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We study sets of non-typical points under the map mod 1 for non-integer β and extend our results from [Fund. Math. 209 (2010)] in several directions. In particular, we prove that sets of points whose forward orbit avoid certain Cantor sets, and the set of points for which ergodic averages diverge, have large intersection properties. We observe that the technical condition β > 1.541 found in the above paper can be removed.
Maciej Paluszyński (2010)
Colloquium Mathematicae
Similarity:
We consider the subspace of L²(ℝ) spanned by the integer shifts of one function ψ, and formulate a condition on the family , which is equivalent to the weight function being > 0 a.e.
Karma Dajani, Martijn de Vries (2007)
Journal of the European Mathematical Society
Similarity:
Let be a non-integer. We consider expansions of the form , where the digits are generated by means of a Borel map defined on . We show existence and uniqueness of a -invariant probability measure, absolutely continuous with respect to , where is the Bernoulli measure on with parameter () and is the normalized Lebesgue measure on . Furthermore, this measure is of the form , where is equivalent to . We prove that the measure of maximal entropy and are mutually...
G. Pantsulaia (2004)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
An example of a nonzero σ-finite Borel measure μ with everywhere dense linear manifold of admissible (in the sense of invariance) translation vectors is constructed in the Hilbert space ℓ₂ such that μ and any shift of μ by a vector are neither equivalent nor orthogonal. This extends a result established in [7].
Grigoris Paouris (2012)
Studia Mathematica
Similarity:
We show that if μ₁, ..., μₘ are log-concave subgaussian or supergaussian probability measures in , i ≤ m, then for every F in the Grassmannian , where N = n₁ + ⋯ + nₘ and n< N, the isotropic constant of the marginal of the product of these measures, , is bounded. This extends known results on bounds of the isotropic constant to a larger class of measures.
Zbigniew Lipecki (2004)
Studia Mathematica
Similarity:
Let ν be a positive measure on a σ-algebra Σ of subsets of some set and let X be a Banach space. Denote by ca(Σ,X) the Banach space of X-valued measures on Σ, equipped with the uniform norm, and by ca(Σ,ν,X) its closed subspace consisting of those measures which vanish at every ν-null set. We are concerned with the subsets and of ca(Σ,X) defined by the conditions |φ| = ν and |φ| ≥ ν, respectively, where |φ| stands for the variation of φ ∈ ca(Σ,X). We establish necessary and sufficient...
Anders Johansson, Anders Öberg, Mark Pollicott (2012)
Journal of the European Mathematical Society
Similarity:
We improve and subsume the conditions of Johansson and Öberg and Berbee for uniqueness of a -measure, i.e., a stationary distribution for chains with complete connections. In addition, we prove that these unique -measures have Bernoulli natural extensions. We also conclude that we have convergence in the Wasserstein metric of the iterates of the adjoint transfer operator to the -measure.